Tìm m > 1 để đths y = (m-1)x+m-2 cắt Ox và Oy tai 2 điểm phân biệt A và B sao cho S tam giác ABC = 2
Cho hs y=(m+1)x + 2 tìm m để đths cắt ox,oy tại A,B sao cho tam giác AOB cân
H/s cắt `Ox` tại `A=>y=0=>0=(m+1)x+2<=>x=-2/[m+1]=>OA=|[-2]/[m+1]|`
H/s cắt `Oy` tại `B=>x=0=>y=2=>OB=|2|=2`
Để `\triangle AOB` cân `=>OA=OB`
`<=>|[-2]/[m+1]|=2`
`<=>|-2|=2|m+1|`
`<=>|m+1|=1<=>[(m+1=1),(m+1=-1):}<=>[(m=0),(m=-2):}`
Cho hàm số y=\(x^2-2\left(m+1\right)x+2m+1\) (1)
Tìm giá trị của tham số m để đồ thị hàm số (1) cắt trục Ox tại hai điểm phân biệt A,B và cắt trục Oy tại C sao cho tam giác ABC có diện tích bằng 3
Tìm m để đths y=mx+2(m-0) cắt trục Ox và Oy tại 2 điểm A;B sao cho tam giác OAB cân
Trong mặt phẳng toạ độ Oxy cho hàm số y = mx + 2
a. Vẽ đths khi m = - 1/2
B. Xác định m đ ể đths cắt trục ox và oy lần lượt tại A và B sao cho tam giác OAB vuông cân
c. Chứng minh rằng với mọi giá trị của m, đths luôn cắt prapol ( P) : y = x2 tại hai điểm phân biệt A , B và tích các khoảng cách từ A,B đen trục Oy là một hằng số
Cho đường tròn (C): x² + y² - 2x - 2y - m = 0
a) Tìm m để (C) cắt trục Oy tại hai điểm phân biệt A, B sao cho tam giác IAB là tam giác vuông
b) Tìm m để (C) cắt trục Ox tại hai điểm phân biệt A, B sao cho tam giác LAB là tam giác đều
c) Tìm m để (C) cắt đường thắng d: x - y + m = 0 tại hai điểm phân biệt A, B sao cho tam giác IAB là tam giác cân có cạnh đáy bằng \(\dfrac{2}{3}\)
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
cho cho hs bậc 1 y = ( m-1)x+m+ 1 (1) với m là tham số m#1
a)tìm m để ĐTHS (1) // y=x+5
b) tìm m để ĐTHS (1) cắt trục Ox, Oy lần lượt tại các điểm A,B . sao cho tam giac AOB la tam giac vuông cân
a) (m-1)=1=> m=2
b)x=0=> y=m+1 => A(0,m+1)
y=0=> x=\(\frac{m+1}{1-m}\)=> B(-3,\(\frac{1+m}{1-m}\))
...............................................
vuong can => m+1=\(\frac{1+m}{1-m}\)
1-m^2=1+m=> m^2+m=0=> m=0 hoac m=-1
Cho hs y= mx + 2 (d)
a. Xác định m để đths cắt trục Ox và Oy lần lượt tại A và B sao cho tam giác OAB vuông cân
1) Cho hàm số: y=2mx+m-5. Tìm m để ĐTHS cất trục hoành tại A, trục tung tại B sao cho tam giác ABC có diện tích bằng 5.
2) Gọi M(1;2), gọi (d) qua M cắ trục tung Ox tại A, Oy tại B. Viết đường thẳng (d) biết AB=20M và điểm M nằm trên AB.
Cô hướng dẫn nhé :)
1. Ta tìm được \(\hept{\begin{cases}A\left(0;m-5\right)\\B\left(\frac{5-m}{2m};0\right)\end{cases}}\) Khi đó ta tính được diện tích tam giác ABC là \(S=\frac{1}{2}\left|m-5\right|\left|\frac{5-m}{2m}\right|=\frac{\left(m-5\right)^2}{4}\left|\frac{1}{m}\right|=5\)
Với \(m>0,\) ta có \(\frac{\left(m-5\right)^2}{4m}=5\Rightarrow m^2-30m+25=0\Leftrightarrow m=15+10\sqrt{2}\left(tm\right)\) hoặc \(m=15-10\sqrt{2}\left(tm\right)\)
Với \(m< 0,\) ta có \(\frac{\left(m-5\right)^2}{-4m}=5\Rightarrow m^2+10m+25=0\Leftrightarrow m=-5\left(tm\right)\)
2. \(M\in d\Rightarrow d:y=kx+2-k\)
Khi đó ta có \(\hept{\begin{cases}A\left(0;2-k\right)\\B\left(\frac{k-2}{k};0\right)\end{cases}}\)Vì e viết AB=20M cô chưa hiểu nên em có thể làm tiếp theo yêu cầu :)
Chú ý do M nằm trên AB nên \(0< 1< \frac{k-2}{k}\Leftrightarrow k< 0\)
Chúc em học tập tốt :))