Tìm giá trị của x để A có giá trị nguyên
\(A=\frac{4x^3-3x^2+2x-83}{x-3}\)
Tìm giá trị nguyên của x để A có giá trị nguyên
\(A=\frac{4x^3-3x^2+2x-83}{x-3}\)
Biến đổi \(A=4x^2+9x+29+\frac{4}{x-3}\)
\(\Leftrightarrow A\in Z\)
\(\Leftrightarrow\frac{4}{x-3}\in Z\)
\(\Leftrightarrow x-3\inƯ\left(4\right)\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng :
x-3 | -1 | 1 | -2 | 2 | -4 | 4 |
x | 2 | 4 | -1 | 5 | -1 | 7 |
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
Cho biểu thức: \(A=\frac{4x^3-8x^2+3x-6}{2x^2-3x-2}\)
a, Rút gọn A.
b, Tìm giá trị nguyên của x để A có giá trị nguyên.
a, \(A=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{2x\left(x-2\right)+x-2}\)
\(=\frac{\left(x-2\right)\left(4x^2+3\right)}{\left(x-2\right)\left(2x+1\right)}=\frac{4x^2+3}{2x-1}\left(ĐKXĐ:x\ne2;x\ne-\frac{1}{2}\right)\)
b, \(A\in Z\Leftrightarrow\frac{4x^2+3}{2x-1}\in Z\Leftrightarrow2x+1+\frac{4}{2x-1}\in Z\)
\(\Leftrightarrow\frac{4}{2x-1}\in Z\Leftrightarrow4⋮\left(2x-1\right)\)
\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Mà 2x - 1 là số lẻ nên \(2x-1\in\left\{-1;1\right\}\Rightarrow x\in\left\{0;1\right\}\) (thỏa mãn ĐKXĐ)
Tìm các giá trị nguyên của x để giá trị của các phân thức sau có giá trị nguyên:
A=2x^3+x^2+2x+4/2x+1
B=3x^2-8x+1/x-3
C=x^3+2x+5x+10/x^2+4x+4
B4 :
Cho đẳng thức : \(M+\frac{2x^2}{3+2x-x^2}=\frac{2x}{x^2-1}+\frac{4x}{x^3-3x^2-x+3}\)
a) Tìm phân thức M
b) Tìm điều kiện để M đc xác định
c) Tìm các giá trị của x để M có giá trị nguyên
\(M+\frac{2x^2}{\left(3-x\right)\left(x+1\right)}=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}-\frac{2x^2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(3-x\right)}{\left(3-x\right)\left(x-1\right)\text{}\left(x+1\right)}+\frac{4x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}+\frac{2x^2\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{6x-2x^2+4x^2-4x+2x^3-2x^2}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x^3-2x}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
có gì sai sót bạn bỏ qua
Học tốt
b) Tìm điều kiện để M đc xác định
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
để M xác định thì
3 - x ≠ 0 => x ≠ 3
x + 1 ≠ 0 => x ≠ -1
Vậy x ≠ { 3 ; -1 } thì M đc xác định
Bài 1 : Tìm giá trị của m để PT
\(3-m=\frac{10}{x+2}\)
có nghiệm là số dương
Bài 2 : Cho A=\(\frac{4x-4}{1-2x+x^2}\)
Tìm x để A <0
Bài 3 : Tìm giá trị nguyên của x để giá trị của biểu thức sau là số nguyên:
A=\(\frac{2x^3-6x^2+x-8}{x-3}\)
B= \(\frac{3x^2-x+3}{3x+2}\)
\(3-m=\frac{10}{x+2}\)
\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)
=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}
TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)
bài 3:
\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)
\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)
Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên
Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)
Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |
Cho biểu thức A= \(\frac{3x^3-14x^2+3x+36}{3x^3-19x^2+33x-9}\)
a) tìm giá trị của x để A xác định
b) tìm giá trị của x để A có giá trị bằng 0
c) Tìm giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức: \(P=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}+\frac{3x+1-x^2}{3x}\)
1) rút gọn biểu thức P
2) tìm giá trị của P biết /x/=1/3
3) tìm các giá trị nguyên của x để biểu thức A có giá trị là số nguyên
Tìm các giá trị nguyên của x để phân thức sau có giá trị 1 số nguyên:
a, \(\frac{3x^3-4x^2+x-1}{x-4}\)
b,\(\frac{3x^2-x+3}{3x+2}\)
c, \(\frac{2x^3-6x^2+x-8}{x-3}\)
d,\(\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)