Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HOAI DƯƠNG THI
Xem chi tiết
Thanh Tâm
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Trần Bảo Minh
16 tháng 1 2022 lúc 21:37

Bó tay. com

Khách vãng lai đã xóa
Nguyễn Tiến Thành
17 tháng 1 2022 lúc 20:51
Ko biết sorry
Khách vãng lai đã xóa
Nguyệt
17 tháng 1 2022 lúc 21:47

ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Khách vãng lai đã xóa
Odette Auspicious Charm
Xem chi tiết
My Nguyễn
Xem chi tiết
Nguyễn Cảnh Kyf
Xem chi tiết
nguyễn thị hải yến
1 tháng 3 2020 lúc 13:01

I don't know how to do exercise

Khách vãng lai đã xóa
Nguyễn Linh Chi
1 tháng 3 2020 lúc 16:50

\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)

Ta có: \(x^2+y^2=37+z^2\)

<=> \(\left(x+y\right)^2-2xy=37+z^2\)

<=> \(2xy=\left(7+z\right)^2-37-z^2\)

<=> \(xy=6+7z\)

Ta có: \(x^3+y^3=1+z^3\)

<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)

<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y

Khách vãng lai đã xóa
Thanh Tâm
Xem chi tiết
Odette Auspicious Charm
Xem chi tiết
Trần Đại Thành Danh
Xem chi tiết