So sánh hai hiệu : 2018^2019-2018^2018 và 2018^2018-2018^2017
So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)
so sánh hai hiệu : 20182019-20182018và20182018-20182017
\(2018^{2019}-2018^{2018}=2018^{2018}.2018-2018^{2018}=2018^{2018}\left(2018-1\right)\)
\(2018^{2018}-2018^{2017}=2018^{2017}.2018-2018^{2017}=2018^{2017}\left(2018-1\right)\)
\(2018^{2019}-2018^{2018}>2018^{2018}-2018^{2017}\)
so sánh 2 hiệu
2018 mu 2019- 2018 mu 2018 va 2018 mu 2017- 2018 mu 2017
so sánh A=2017+2018 /2018+2019 và B=2017/2018+2018/2019
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1
A=2017+2018/2018+2019 và B = 2017/2018+2018/2019
So Sánh
Ta có :
\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)
Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế )
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Mình thấy là A<B.
Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019
Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B
=> A<B
Ta có :
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)
\(\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\)
\(\Rightarrow\frac{2017+2018}{2018+2019}< B\)
\(\Rightarrow A< B\)
Chúc bạn học tốt !!!
so sánh: 2018^2019-2018^2017 và 2018^2017-2018^2015
Ta có: 20182019 - 20182017 = 20182017(20182 - 1)
20182017 - 20182015 = 20182015(20182 - 1)
Vì 20182017(20182 - 1) > 20182015(20182 - 1)
=> 20182019 - 20182017 > 20182017 - 20182015
Vậy 20182019 - 20182017 > 20182017 - 20182015
so sánh: A= 2017+2018/2018+2019 với B= 2017/2018+2018/2019
So sánh
P= 2016/2017+2017/2018+2018/2019 và
Q= 2+2016+2017+2018/2017+2018+2019
Ghi đầy đủ các bước hộ mk nha
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)