Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Tường Vy
Xem chi tiết
Phan Bảo Huân
8 tháng 12 2016 lúc 9:54

A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7

A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)

A=2011+2010 mũ 2.2011+...2010 mũ 6.2011

A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011

Le gia Huy
Xem chi tiết
Minh Hiền
15 tháng 7 2015 lúc 8:22

2010100+201099

=201099.(2010+1)

=201099.2011 chia hết cho 2011

=> 2010100+201099 chia hết cho 2011

Mai Quỳnh Anh
24 tháng 2 2017 lúc 19:57

2010100+ 201099

= 201099 .(2010+1)

= 201099 . 100 chia hết cho 2011

=> 2010100 + 201099 chia hết cho 2011

tk mk nha

Đặng Thùy Linh
Xem chi tiết
Marry
3 tháng 12 2017 lúc 13:26

Ta có:\(7^0+7^1+7^2+...+7^{2011}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{2010}+7^{2011}\right)\)

\(=8+8.49+...+8.7^{2010}\)

\(=8\left(1+49+..+7^{2010}\right)⋮8\)

Vậy \(7^0+7^1+7^2+...+7^{2010}+7^{2011}⋮8\)

Bùi Thị Huyền
3 tháng 12 2017 lúc 13:27

= 7 mũ ko . 1 + 7 mũ 0 .7 ( tách 7 mũ 1 ) +.........+ 7 mũ 2010 .1 + 7 mũ 2010 . 7

= 7 mũ ko . ( 1+7 ) + 7 mũ 2 . ( 1 + 7 ) + ..... + 7 mũ 2010 . ( 1+ 7 )

= 7 mũ ko . 8 + 7 mũ 2 . 8 + .... + 7 mũ 2010 . 8 

= ( 7 mũ 0 + 7 mũ 2 + 7 mũ 4 + .... + 7 mũ 2008 + 7 mũ 2010 ) . 8 .... chia hết cho 8 

=> ( 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + ..... 7 mũ 2010 + 7 mũ 2011 ) chia hết cho 8

Trần Lê Tiến Dũng
22 tháng 12 2018 lúc 19:59

7 mũ 0 +7 mũ 1 + 7 mũ 2 + ....... +7 mũ 2010 +7 mũ 2011

Chia hết cho 8 các bn nhé

Tran Le Khanh Quynh
Xem chi tiết
letrungyen
Xem chi tiết
Bùi Minh Anh
14 tháng 12 2015 lúc 9:57

M=(2010+2010^2)+(2010^3+2010^4)+(2010^5+2010^6)+2010^7+1

=2010x2011+2010^3x2011+2010^5x2011+2010^7+1

=2011x(2010+2010^3+2010^5)+2010^7+1

mà 2010^6 đồng dư với 1 (mod 2011) nen 2010^6 x 2010 dong du voi 2010(mod 2011)

nên 2010^6 x 2010 +1 đồng dư với 2011 (mod 2011) nên 2010^7 +1 chia hết cho 2011 vậy m chia hết cho 2011

Pikachu
14 tháng 12 2015 lúc 9:39

ai ủng hộ vài li-ke để lên hạng 3 đi ( tui sẽ trả li-ke lại )

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
pham thi thanh huong
Xem chi tiết
Anh2Kar六
19 tháng 12 2018 lúc 17:59

A=( 50 +51)(5+52)+(53+54)+...+(599+5100)

A=5.6+53.6+...+599.6
A=6.(5+53+...+599) sẽ chia hết cho 6

Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
Nguyễn Nam Anh
Xem chi tiết
Nguyễn Thanh Hằng
23 tháng 4 2017 lúc 23:10

Ta có :

\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)

\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)

\(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)

~ Học tốt ~