Cho a/b=c/d. CMR:
\(\frac{2020a+2019b}{2020a-2019b}=\frac{2020c+2019d}{20120c-2019d}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức: \(M=\frac{2020a-2018b}{c+d}-\frac{2019b+2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức: \(M=\frac{2020a-2018b}{c+d}-\frac{2019b+2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức:
\(M=\frac{2020a-2018b}{c+d}-\frac{2019b-2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
cho tỉ lệ thức : \(\frac{2020a+2019b+c}{2020a+2019b-c}=\frac{2020a-2019b+c}{2020a+2019b-c}\)trong đó b khác 0. Chứng minh rằng c = 0
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}.Chứngminh\frac{2018a-2019b}{2018c+2019d}=\frac{2018c-2019d}{2018a+2019b}\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)
Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\) Chứng minh:
a) \(\frac{a+2019b}{a-2019b}=\frac{c+2019d}{c-2019d}\)
b)\(\frac{2019\left(a+c\right)}{2019a}=\frac{b+d}{b}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta có tỉ lệ thức sau :
\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Dăm ba mấy bài đặt k:v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)
\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)
Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).CMR \(\frac{2017-2018b}{2018a+2019b}=\frac{2017c-2018d}{2018c+2019d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)
<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)
<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta co tỉ thức sau :
\(\frac{2018a^{2\:}+2019b^2}{2018b^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Đặt bằng k nhé các bạn , giúp mình nhanh lên ạ
Nhanh lên ạ
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)
\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)