Cho \(\frac{x-5}{4}\)=\(\frac{y-7}{3}\)=\(\frac{z-4}{5}\)và \(\frac{2+x}{6}\)+\(\frac{14+x}{4}\)=8
Tính x+y+z=?
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}\)và x-y+z=-10
\(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}\)và x+y-z=-40
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{7}\)và x-y+z=144
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}\)và x+y+z=72
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) và x+y-z=21
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
Tìm x,y,z khi:
1,\(\frac{x}{7}=\frac{y}{3}vàx-24=y\)
2,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}và,y-x=48\)
3,\(\frac{x-1}{2005}=\frac{3-y}{2006}và,x-y=4009\)
4,\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vã-y-z=28\)
5,\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}và2x+3y-z=-14\)
6,\(3x=y;5y=4zvà6x+7y+8z\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
3) tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\) và -x - y + z = -10
b) \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\) và x +y + z = 92
c) \(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y -z = 186
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
e) 2x = 3y ; 5y = 7z và 3x - 7y + 5c = 30
f) 2x = 3y = 4z và x + y + z = 169
g*) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
h*) \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\) và x +y + z = 48
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
1) A= \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
b) Cho 3 so x,y,z la 3 so khac 0 thoa man dieu kien :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hay tinh gia tri bieu thuc:\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Bài 1 :
Ta có :
\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(A=\frac{3}{5}+\frac{2}{5}\)
\(A=1\)
\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Đo đó :
\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)
\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)
\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)
Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được :
\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~
bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà
câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2
(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai)
Bài 1:
a) \(\left(2x-3\right)\left(x^2+0,75\right)=0\)
b)\(\frac{x+3}{-2}=\frac{-8}{x+3}\)
c) \(\left(\frac{1}{2}\cdot x-1\right)^2=\frac{16}{81}\)
d) \(2^{x+1}-2^x=8\)
e) \(\frac{2x-3}{5}=\frac{4x+3}{-7}\)
BÀI 2:
a) x:y:z=3:(-5):7 và 2z-3y-x=4
b) 3x=5y=6z và x-y-2z=4
c)$\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}$ và 2x+y-z=-14
d)$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$ và 3y+x-z=4
tìm x ; y ; z biết
\(\frac{x}{19}=\frac{y}{21}\)và 2x -y = 34
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\)và 5x + y - 2z = 28
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z =186
\(3x=2y;7y=5z\)và x - y + z = 32
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + x = 49
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và x2 + y2 + z2 = 14
\(2x=3y;5y=7z\)và 3x + 5z - 7y = 30
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k
Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3
=> x=2.3=6
y=3.3=9
z=5.3=15
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> x2/4 = 1/4 => x2 = 1 => x=\(\pm1\)
y2/16 = 1/4 => y2 = 4 => \(y=\pm2\)
z2/36 = 1/4 => z2 = 9 => \(z=\pm3\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}\) và x+y-z=8
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}\)và 3x+2y+4z=47
Chắc câu hỏi là tìm x, y, z
1) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{x+y-z-10}{2}=\frac{8-10}{2}=-1\)
=> x-1 = 3.(-1) => x = -2
y-2 = 4.(-1) => y = -2
z+7 =5.(-1) => z = -12
2) Làm tương tự, nhưng trước khi cộng tử và mẫu các phân số với nhau thì nhân cả tử và mẫu phân số thứ nhất với 3; phân số thứ hai với 2 và phân số thứ ba với 4 để xuất hiện tổng 3x + 2y +4z.
\(\frac{3\left(x+1\right)}{3.3}=\frac{2\left(y+2\right)}{-4.2}=\frac{4\left(z-3\right)}{5.4}=\frac{3\left(x+1\right)+2\left(y+2\right)+4\left(z-3\right)}{9-8+20}=\frac{47-5}{21}=2\)
=> x + 1 = 3.2 => x = 5
y+ 2 = -4.2 => y = -10
z-3 =5.2 => z = 13
Tìm x, y, z
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}v\text{à}2\text{x}+3y-z=186\)
b, 3x=2y ; 7y = 5z và x-y+z = 32
c,\(\frac{2\text{x}}{3}=\frac{3y}{4}=\frac{4\text{z}}{5}v\text{à}x+y+z=49\)
d, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
e, x+y=x:y= 3.(x-y)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....