tìm GTLN và GTNN
A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
B=\(\sqrt{9+4x-x^2}\)
Bài 1: Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B= \(\sqrt{9+4x-x^2}\)
Bài 2: Tìm GTLN của
a) C= \(\sqrt{x}+x\)
b) C= \(x+\sqrt{3-x}\)
Bài 3: Tìm GTNN của
a) E= \(x-\sqrt{x-2015}\)
b) F= \(\sqrt{x^2-4x+4}+\sqrt{x^2+10x+25}\)
Mọi người giúp mình với. Mình cảm ơn trước ạ!
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B = \(\sqrt{9+4x-x^2}\)
a/ ĐKXĐ: ...
Ta có \(\sqrt{3-x^2}\ge0\Rightarrow A\le\frac{3}{1+2.0}=3\)
\(\Rightarrow A_{max}=3\) khi \(x=\pm\sqrt{3}\)
\(3-x^2\le3\Rightarrow\sqrt{3-x^2}\le\sqrt{3}\Rightarrow A\ge\frac{3}{1+2\sqrt{3}}\)
\(\Rightarrow A_{min}=\frac{3}{1+2\sqrt{3}}\) khi \(x=0\)
b/ĐKXĐ:...
\(B=\sqrt{13-\left(x^2-4x+4\right)}=\sqrt{13-\left(x-2\right)^2}\)
\(13-\left(x-2\right)^2\le13\Rightarrow B\le\sqrt{13}\)
\(\Rightarrow B_{max}=\sqrt{13}\) khi \(x=2\)
\(\sqrt{13-\left(x-2\right)^2}\ge0\Rightarrow B_{min}=0\) khi \(\left(x-2\right)^2=13\Rightarrow x=2\pm\sqrt{13}\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Bài 1 : Tìm GTNN của
a ) \(A=x-2\sqrt{x+2}\)
b) B= \(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
c) \(C=\sqrt{49x^2-22x+9}+\sqrt{49x^2+22x+9}\)
Bài 2 : Cho x ,y ,z dương . Chứng minh rằng :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
Bài 3 : Tìm x , y, z thỏa mãn \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Bài 4 : So sánh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)và 10
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)
\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)
CỘng theo vế 3 BĐT trên có:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
Khi x=y=z
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(..........................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn sẽ ko làm như vậy !!!!!
Tìm GTLN,GTNN của
a, \(A=\sqrt{x-2}+\sqrt{4-x}\)
b, \(B=\frac{3-4x}{x^2+1}\)
b,\(GTNN\)
\(\frac{3-4x}{x^2+1}=\frac{\left(x^2-4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
GTNN của B =-1 tại x=2