Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen kim chi
Xem chi tiết
le gia bach
Xem chi tiết
Bùi Thị Vân
2 tháng 11 2017 lúc 9:09

a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên  p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
 

Bùi Thị Vân
2 tháng 11 2017 lúc 9:20

b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì  p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9.  Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1.  Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.

coolkid
4 tháng 12 2019 lúc 21:56

Another way !!!

Ta có

\(4p^2+1=5p^2+\left(p-1\right)\left(p+1\right)\)

\(4\left(6p^2+1\right)=25p^2+\left(p-2\right)\left(p+2\right)\)

Nếu p chia 5 dư 4 hoặc dư 1 thì \(4p^2+1⋮5\)

\(\Rightarrow4p^2+1\) không là số nguyên tố vì luôn lớn hơn 5

Nếu p chia 5 dư 3 hoặc dư 2 thì \(4\left(6p^2+1\right)⋮5\Rightarrow6p^2+1⋮5\) vì \(\left(4;5\right)=1\)

\(\Rightarrow6p^2+1\) không là số nguyên tố vì luôn lớn hơn 5

Khi đó p chia hết cho 5 mà p là số nguyên tố nên p=5 

Khách vãng lai đã xóa
Vũ Quang Vinh
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 22:44

Lời giải:
Nếu $p$ chia hết cho $5$ thì $p=5$. Khi đó $4p^2+1=4.5^2+1=101$ là snt và $6p^2+1=6.5^2+1=151$ là snt (thỏa mãn) 

Nếu $p$ không chia hết cho 5. Khi đó $p^2$ chia $5$ dư $1$ hoặc $4$.

+ Nếu $p^2$ chia $5$ dư $1$

$\Rightarrow 4p^2$ chia $5$ dư $4$. Khi đó $4p^2+1$ chia hết cho $5$. Mà $4p^2+1>5$ nên không là snt (trái với giả thiết) 

+ Nếu $p^2$ chia $5$ dư $4$

$\Rightarrow 6p^2$ chia $5$ dư $24$, hay dư $4$

$\Rightarrow 6p^2+1$ chia hết cho $5$. Mà $6p^2+1>5$ nên không là snt (trái với đề) 

Vậy $p=5$ là kết quả duy nhất thỏa mãn.

Nguyen Huyen Tram
Xem chi tiết
Bùi Vương TP (Hacker Nin...
17 tháng 3 2019 lúc 20:58

b)

 p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố) 
* p = 3 thì 6p2 + 1 = 55 không là SNT 
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài. 
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2. 
khi: p = 5k ± 1thì 
4p+ 1 = 4(25k2 ± 10k + 1) + 1= 4.25k± 4.10k + 5 > 5 và chia hết cho 5 
khi p = 5k ± 2 thì: 
6k2 + 1 =6(25k± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5 
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT. 
=> p = 5 là SNT cần tìm.

tran khanh my
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
Vũ Thùy Linh
16 tháng 9 2017 lúc 22:28

xét p=2 , 5 thỏa mãn .

xét p=3 ko thỏa mãn

xét p>5 => ko thỏa mãn 4p^2+1 và 6p^2 +1 là snt

Jonh Capricorn
Xem chi tiết
vũ tiền châu
11 tháng 6 2018 lúc 21:16

xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?

Jonh Capricorn
11 tháng 6 2018 lúc 21:21

uk mk vt thiếu

Riin
Xem chi tiết
Tobot Z
Xem chi tiết
Kiệt Nguyễn
16 tháng 3 2019 lúc 21:25

Tìm số nguyên tố p để 4p^2+1 và 6p^2+1 cũng là số nguyên tố? | Yahoo Hỏi & Đáp

Bạn tham khảo

Tobot Z
17 tháng 3 2019 lúc 10:00

Bạn giải ra luôn được không

Bùi Vương TP (Hacker Nin...
17 tháng 3 2019 lúc 20:58

 p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố) 
* p = 3 thì 6p2 + 1 = 55 không là SNT 
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài. 
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2. 
khi: p = 5k ± 1thì 
4p2 + 1 = 4(25k2 ± 10k + 1) + 1= 4.25k2 ± 4.10k + 5 > 5 và chia hết cho 5 
khi p = 5k ± 2 thì: 
6k2 + 1 =6(25k2 ± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5 
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT. 
=> p = 5 là SNT cần tìm.