Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ghdoes
Xem chi tiết
Tin Trần Thị
Xem chi tiết
Vân Khánh
Xem chi tiết
Tiến Dũng Trương
8 tháng 3 2017 lúc 21:49

x^2+y^2=4+xy

suy ra A_max thì xy max

ta có x^2+y^2>=2xy suy ra x^2+y^2=2xy (1) (để xy max)

x^2+y^2=4+xy (2)

Từ 1 và 2 suy ra 2xy=4+xy

suy ra xy=4

suy ra x^2+y^2=8

dấu"=" khi x=y

Hoàng Khánh Chi
Xem chi tiết
Nguyễn Trần Thái Uyên
6 tháng 12 2023 lúc 23:07

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

Phương Minh
Xem chi tiết
Thỏ bông
Xem chi tiết
Lê Đức Hoàng Sơn
Xem chi tiết
Nỏ có tên
Xem chi tiết
Phùng Minh Quân
16 tháng 6 2020 lúc 17:26

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

Khách vãng lai đã xóa
Phùng Minh Quân
16 tháng 6 2020 lúc 17:50

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

Khách vãng lai đã xóa
Võ Thị Quỳnh Giang
Xem chi tiết
Dương Thu Ngọc
Xem chi tiết