Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tôi Là Ai
Xem chi tiết
nguyễn mai anh
Xem chi tiết
Don't Be Shine Gamin...
Xem chi tiết
qwertyuiop
Xem chi tiết
tung vu
Xem chi tiết
Lương Thị Minh Thu
29 tháng 7 2017 lúc 9:42

Đặt:a/b=c/d=k =>a=bk,c=dk

Thay vào vế trái ta có:

a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)

Thay vào vế phải ta có:

ab/cd=b^2.k/d^2.k=b^2/d^2(2)

Từ 1 và 2 =>đpcm

tung vu
2 tháng 8 2017 lúc 8:15

ok cam on ban nhieu

Silent Kyz
Xem chi tiết
Xyz OLM
2 tháng 9 2020 lúc 15:59

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(a+c\right)^2}{a^2-ac+ac-c^2}=\frac{\left(a+c\right)^2}{a\left(a-c\right)+c\left(a-c\right)}=\frac{\left(a+c\right)^2}{\left(a+c\right)\left(a-c\right)}=\frac{a+c}{a-c}\)

\(=\frac{bk+dk}{bk-dk}=\frac{k\left(b+d\right)}{k\left(b-d\right)}=\frac{b+d}{b-d}\)(1)

Lại có \(\frac{\left(b+d\right)^2}{b^2-d^2}=\frac{\left(b+d\right)^2}{b^2-bd+bd-d^2}=\frac{\left(b+d\right)^2}{b\left(b-d\right)+d\left(b-d\right)}=\frac{\left(b+d\right)^2}{\left(b-d\right)\left(b+d\right)}=\frac{b+d}{b-d}\left(2\right)\)

Từ (1) (2) => \(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(b+d\right)^2}{b^2-d^2}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
2 tháng 9 2020 lúc 16:03

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(a+c\right)\left(a+c\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a+c}{a-c}=\frac{bk+dk}{bk-dk}=\frac{k\left(b+d\right)}{k\left(b-d\right)}=\frac{b+d}{b-d}\)(1)

\(\frac{\left(b+d\right)^2}{b^2-d^2}=\frac{\left(b+d\right)\left(b+d\right)}{\left(b-d\right)\left(b+d\right)}=\frac{b+d}{b-d}\)(2)

Từ (1) và (2) => đpcm 

Khách vãng lai đã xóa
Trí Tiên亗
2 tháng 9 2020 lúc 16:03

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+c}{a-c}=\frac{b+d}{b-d}\)

\(\Rightarrow\frac{\left(a+c\right).\left(a+c\right)}{\left(a-c\right).\left(a+c\right)}=\frac{\left(b+d\right).\left(b+d\right)}{\left(b-d\right).\left(b+d\right)}\)

\(\Leftrightarrow\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(b+d\right)^2}{b^2-d^2}\) ( đpcm )

Khách vãng lai đã xóa
Ngô Văn Nam
Xem chi tiết
Lê Anh Tú
24 tháng 12 2016 lúc 22:18

Ta có : 4( b² + c² + d² + e²) ≥( b + c + d +e )² ( dễ lắm, bạn tự cm lấy nhé, ) 
=> ( b² + c² + d² + e²) ≥ ( b + c + d +e )²/4 (*) 
G/s bdt đề bài đúng, ta có: 
<=> a² + b²+ c² + d²+ e² - a(b + c + d +e) ≥ 0 
Lại có ( *) => ta có : a² + b²+ c² + d² + e² - a(b + c + d +e) ≥ a² + ( b + c + d +e )²/4 - a(b + c + d +e) 
<=> [ a - ( b + c+ d +e)/2]² => hiển nhiên đúng 
Vậy ta có dpcm. 
Với cách này ta cũng có thể chứng minh các bdt tương tự với 3 biến, 4 biến v.v.... 

mã hằng
Xem chi tiết
hương mai nguyen
Xem chi tiết