Tìm STN n để :
2n + 7 chia hết cho 2n + 1
Tìm STN m để :
3m - 9 chia hết cho 3m - 1
tìm stn n để
a) 4n-7 chia hết cho n-1
b) 10-2n chia hết cho n-2
a, 4n - 7 ⋮ n - 1
=> 4n - 4 - 3 ⋮ n - 1
=> 4(n - 1) - 3 ⋮ n - 1
=> -3 ⋮ n - 1
=> n - 1 thuộc Ư(-3)
=> n - 1 thuộc {-1; 1; -3; 3}
=> n thuộc {0; 2; -2; 4}
Tìm STN n để:(n^2+2n+7) chia hết cho (n+2)
Tim STN n để
a)n+2 chia hết cho n-1
b)2n+7 chia hết cho n + 1
c) 2n+1 chia hết cho 6 - n
Tìm STN n để
a) 2n+ 1 chia hết cho n + 2
b) 3n + 2 chia hết cho 2n + 1
a,Chứng minh nếu m và n là 2 stn thì B=(m+2n+3).(3m-2n-2) là số chẵn
b,cho x,y thuộc Z
A=3x(x-y)và B=y2-x2 biết x-y chia hết cho 7
chứng minh A-B chia hết cho 7
CACS PÁC ƠI GIÚP EM CÂU NÀY
tìm STN n để
3n-1 chia hết cho n-3
4n +1 chia hết cho 2n -1
5n +3 chia hết cho 2n+1
1)3n-1⋮n-3
=>3n-1-8+8⋮n-3
=>3n-9+8⋮n-3
=>3(n-3)+8⋮n-3
=>8⋮n-3(do 3(n-3)⋮n-3)
=>n-3∈Ư(8)=>n-3∈{1,2,4,8}
+)n-3=1=>n=1+3=4
+)n-3=2=>n=2+3=5
+)n-3=4=>n=4+3=7
+)n-3=8=>n=8+3=11
Vậyn∈{4,5,7,11}
a, ta có 3n-1=3(n-3)+8 chia hết cho n-3 khi n-3 là ước của 8 hay \(n-3\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\Rightarrow n\in\left\{1,2,4,5,7,11\right\}\)
b, ta có 4n+1=2(2n-1)+3 chia hết cho 2n-1 khi 2n-1 là ước của 3 hay \(2n-1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{0,1,2\right\}\)
c, ta có với n=0 thì thỏa mãn
với n khác 0 thì 2 không chia hết cho 2n+1 ta được 10n+6 chia hết cho 2n+1. ta có 10n+6=5(2n+1)+3 chia hết cho 2n+1 khi 2n+1 là ước của 3 hay \(2n+1\in\left\{\pm3,\pm1\right\}\Rightarrow n\in\left\{0,1\right\}\)
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
Tìm STN n để
a) 2n+ 1 chia hết cho n + 2
b) 3n + 2 chia hết cho 2n + 1
Giúp với ạ
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
*Mong các bạn giải hết cho mình nha*
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4
c/ (2n +2)12 = 24(n+1) chia hết cho 24