Tìm GTLN:
\(P=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Tìm GTLN
\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Nhân thêm và, dùng Cauchy
\(1\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x}{2}\). Tương tự với y thì nhân 2; với z thì nhân 3
\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Ta có: \(\sqrt{x-1}\le\frac{1+x-1}{2}=\frac{x}{2}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)
Chứng minh tương tự ta được: \(\frac{\sqrt{y-2}}{y}\le\frac{1}{2\sqrt{2}}\)
\(\frac{\sqrt{z-3}}{z}\le\frac{1}{2\sqrt{3}}\)
Suy ra: \(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\)
Vậy GTLN của biểu thức = \(\frac{1}{2}.\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
TÌM GTLN của M = \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Bài toán thiếu điều kiện \(x\ge1;y\ge2;z\ge3\)
Ta có : \(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Áp dụng bđt Cauchy, ta có : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{x}{2x}=\frac{1}{2}\)
Tương tự : \(\frac{\sqrt{y-2}}{y}=\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}.y}\le\frac{y-2+2}{2\sqrt{2}.y}=\frac{y}{2\sqrt{2}y}=\frac{1}{2\sqrt{2}}\)
\(\frac{\sqrt{z-3}}{z}=\frac{\sqrt{\left(z-3\right).3}}{\sqrt{3}z}\le\frac{z-3+3}{2\sqrt{3}z}=\frac{z}{2\sqrt{3}z}=\frac{1}{2\sqrt{3}}\)
Cộng các bđt theo vế , được : \(M\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}z-3=3\\y-2=2\\x-1=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy giá trị lớn nhất của M bằng \(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi và chỉ khi (x;y;z) = (2;4;6)
cho \(x\ge1,y\ge2,z\ge3\)
tìm GTLN của \(A=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
áp dụng BĐT AM-GM
\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)
\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)
có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)
\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)
\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)
tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)
(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Tìm GTLN:
\(P=\frac{yz\sqrt{x-1}+xz\sqrt{y-z}+xy\sqrt{z-2}}{xyz}\)
Đề có vấn dề thì phải căn thứ 2 ấy
Bài này CHTT có thìphair
Cho x,y,z > 0. Tìm GTLN của: \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Cho x,y,z là 3 số thực dương. Tìm GTLN của biểu thức :
P= \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)
Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1
Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1
Dự đoán MaxP = 1 khi c = t = k = 1
Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z
Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)
CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)
\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)
Từ (1), (2) và (3) cộng vế theo vế ta có:
\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)
=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)
Dấu "=" xảy ra <=> x = y = z
Vậy MaxP = 1 <=> x = y = z
một bài khá hay :)
Ta có \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=1-\frac{x}{x+2\sqrt{yz}}\le1-\frac{x}{x+y+z}\left(1\right)\)
Tương tự \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}=1-\frac{y}{y+2\sqrt{xz}}\le1-\frac{y}{x+y+z}\left(2\right)\)
\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}=1-\frac{z}{z+2\sqrt{xy}}\le1-\frac{z}{x+y+z}\left(3\right)\)
Cộng (1);(2);(3)
\(2P\le3-\frac{x+y+z}{x+y+z}=2\Rightarrow P\le1\)
Vậy \(minP=1\)Khi và chỉ khi \(x=y=z\)
Cho các số thực dương thõa mãn \(\sqrt[]{xy}+\sqrt[]{yz}+\sqrt[]{xz}=\sqrt[]{xyz}\)
Tìm Min của P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
tìm Max của\(P=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)với x y z > 0 và xy+yz+xz=xyz
Cho x,y,z >0 tm xy+yz+zx=xyz. Tìm GTLN của:
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)