Cho a>0, b>0 và thoả mãn a+b=1
CMR: \(8\left(a^4+b^4+\frac{1}{ab}\right)\ge5\)
cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Cho a,b>0 thoả mãn a+b=1
CMR: \(\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\ge\frac{25}{4}\)
Ta có: \(\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\)
\(=\left(ab+\frac{1}{ab}+\frac{a}{b}+\frac{b}{a}\right)\left(c+\frac{1}{c}\right)\)
\(=\left[ab+\frac{1}{16ab}+\frac{15}{16ab}+\left(\frac{a}{b}+\frac{b}{a}\right)\right]\left(c+\frac{1}{c}\right)\)
\(\ge\left[2\sqrt{ab.\frac{1}{16ab}}+\frac{15}{4\left(a+b\right)^2}+2\sqrt{\frac{a}{b}.\frac{b}{a}}\right]\left(2\sqrt{c.\frac{1}{c}}\right)\)
\(\ge\frac{25}{2}\left(Đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{2};c=1\)
Cho a,b>0 thõa mãn điều kiện ab=1
CMR: \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)
Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)
\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)
\(=a+b+2+a+b+\frac{4}{a+b}\)
\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)
\(=2+2+4=8\)
Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1
1, CMR với mọi số thực a, b luôn có: \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) và \(ab\le\frac{1}{4}\left(a+b\right)^2\)
2, Cho x, y, z là các số thực dương thoả mãn \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\)
Tìm GTLN của \(E=\frac{2x-y-z}{y+z}\)
1)
+) Ta có
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) ( đpcm )
+ ) Theo phần trên
\(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow ab\le\frac{1}{4}\left(a+b\right)^2\) ( đpcm )
2,
Ta có: \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\Leftrightarrow5x^2-9x\left(y+z\right)+5\left(y+z\right)^2=28yz\le7\left(y+z\right)^2\)\(\Leftrightarrow5x^2-9x\left(y+z\right)-2\left(y+z\right)^2\le0\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}-2\le0\)\(\Leftrightarrow\left(5.\frac{x}{y+z}+1\right)\left(\frac{x}{y+z}-2\right)\le0\Leftrightarrow\frac{x}{y+z}\le2\)(Do \(5.\frac{x}{y+z}+1>0\forall x,y,z>0\))
\(\Rightarrow E=\frac{2x-y-z}{y+z}=2.\frac{x}{y+z}-1\le2.2-1=3\)
Đẳng thức xảy ra khi \(y=z=\frac{x}{4}\)
Bài tập: Mọi người giúp mình đi, mình cảm ơn nhiều lắm nhé. Mai mình cần nộp rồi (giải chi tiết giúp mình nghe)
a) Cho a,b,x,y khác 0 thoả mãn x = a - y và y = \(\frac{xb}{x-b}\)( x khác b)
CMR 4 số a,b,x,y lập thành một tỉ lệ thức
b) Cho x,y,z thuộc Q thoả mãn xy + yz + zx = 1
CMR: Số A = \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)}\)là một số hữu tỉ
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )
Khó quá do anh thien
\(A=3+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$
$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$
Thiếu đề nha bạn
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính
Cho a;b;c > 0 thỏa mãn a + b + c = 1
CMR: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)
Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được
\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))
\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)