Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Myeong Bayby
Xem chi tiết
thuthuy123
Xem chi tiết
linh linh
26 tháng 5 2018 lúc 21:56

B ơi b lấy đề này ở đâu v ạ

Huỳnh Diệu Linh
Xem chi tiết
Sam Sam
Xem chi tiết
Đặng Hữu Hiếu
25 tháng 5 2018 lúc 10:00

ĐKXĐ a>0 và a≠1

Rút gọn được A=2+2(a+1)/√a

A=7 → 2+2(a+1)/√a=7→2a-5√a+2=0, giải ra a=4 hoặc a=1/4.

Do a≠1 nên (√a-1)²>0 → a+1>2√a, do đó A>2+2.2√a/√a=6. Vậy A>6 với mọi a>0 và a≠1

Sam Sam
25 tháng 5 2018 lúc 11:10

Bản trả lời câu a ra hộ mình đi

Đặng Hữu Hiếu
25 tháng 5 2018 lúc 12:31

Viết bằng điện thoại nên hơi khó trình bày, c dựa vào a√a+1=(√a+1)(a-√a+1), a√a-1=(√a-1)(a+√a+1), 

nguyễn minh hà
Xem chi tiết
Trần Việt Linh
7 tháng 8 2016 lúc 19:37

Bạn có thể đăng từng bài k như thế nhìn đã sợ ai làm

Nguyễn Tuấn
7 tháng 8 2016 lúc 20:15

1)đặt nhân tử chung quy đồng là xong

2)phân tích x+2cănx-3=(1-cănx)(3+cănx)

3)2a+căn a đặt căn a ra r rút gọn

nguyen phuong thao
Xem chi tiết
゚°☆Morgana ☆°゚ ( TCNTT )
11 tháng 6 2019 lúc 15:19

em ko bieets hu hu

T.Ps
11 tháng 6 2019 lúc 15:41

#)Giải :

a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)

T.Ps
11 tháng 6 2019 lúc 15:44

#)Giải :

b) Để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Kết hợp với đkxđ => 0 < x < 9

Hạc Phởn
Xem chi tiết
Thanh Tùng Phạm Văn
7 tháng 12 2016 lúc 21:19

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

Nguyễn Thị Xuân
Xem chi tiết
doan ngoc mai
14 tháng 6 2016 lúc 10:22

a,   A\(=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x-1}{\sqrt{x}}\)  ĐK  x>0   ;\(x\ne1;x\ne-1\)

    \(A=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{x-1}\)

\(A=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}\)=\(\frac{4x^2}{\left(x-1\right)^2}\)

b,  Để  A =2  \(\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Rightarrow4x^2=2\left(x-1\right)^2\)

                     <=>  \(4x^2=2x^2-4x+2\)

                      <=> \(2x^2+4x-2=0\)

                       <=> \(x^2+2x-1=0\)

                       \(\Delta=1^2-1.\left(-1\right)\) =  2

                => \(\orbr{\begin{cases}x_1=-1-\sqrt{2}\left(loại\right)\\x_2=-1+\sqrt{2}\left(nhận\right)\end{cases}}\)

Vậy x=\(-1+\sqrt{2}\)thì  A =2  

c, Thay   x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)=2

  =>A  =   \(\frac{4.2^2}{\left(2-1\right)^2}=16\)

Vậy  A=16  thì  x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

Hatsune Miku
Xem chi tiết