a) xy+x+y=14
b) xy-x-y=7
Tìm số tự nhiên x; y
Bài 4: Tìm số tự nhiên x; y sao cho:
a) (x + 2).(y + 1)=21 b) xy + x + y=10
c) 2 x+ xy - y=7 d) x + 2xy + y=10
Bài 5 : Tìm số tự nhiên x; y sao cho :
a) (x + y) .(x - y)=7 ( x>y)
b) x2 + y + x + xy = 11
Bài 6 : Tìm số tự nhiên a;b sao cho
a) 5ab + b = 510
b) 2a + 2b = 2a+b
Bài 4:
\(a,\Rightarrow\left(x+2\right)\left(y+1\right)=3\cdot7=7\cdot3=21\cdot1=1\cdot21\)
x+2 | 1 | 21 | 3 | 7 |
y+1 | 21 | 1 | 7 | 3 |
x | -1(loại) | 19 | 1 | 5 |
y | 20 | 0 | 6 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(19;0\right);\left(1;6\right);\left(5;2\right)\right\}\)
Tìm x ,y là số tự nhiên ,biết
1) xy=2. 2) xy=5. 3)xy =6. 4)xy=8. 5)xy=12
6) xy=42 (x<y)
a, x=1; y=2 => 12
x=2; y=1 => 21
b, x=1; y=5 => 15
x=5; y=1 => 51
c, x=1; y=6 => 16
x=6;y=1 => 61
x=2; y=3=> 23
x=3; y=2 => 32
d, x=1; y=8 => 18
x=2; y=4 => 24
x=4; y=2 => 42
x=8; y=1 => 81
5,
x=3; y=4 => 34
x=4; y=3 => 43
x=2; y=6 => 26
x=6; y=2 => 62
a) Tìm x, y là số tự nhiên biết: xy + x + 2y = 5
b) Tìm x, y là số nguyên để xy + 2x + 2y = -16
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
a) Ta có xy+x+2y=x(y+1)+2(y+1-1)=x(y+1)+2(y+1)-2=(y+1)(x+2)-2=5 ===> (y+1)(x+2)=7
Lại có: 7=1 . 7=(y+1)(x+2)
Ta có bảng giá trị:
y+1 | 1 | 7 |
x+2 | 7 | 1 |
y | 0 | 6 |
x | 5 | -1 |
câu b bạn làm tuơng tự nha
Tìm số tự nhiên x;y :
a) xy = 7
b) ( x - 1 ).( y - 3 ) = 6
c) xy - x = 5
a. Các cặp (x;y) là: (1;7); (7;1).
b. =>
x-1 | 1 | 6 | 3 | 2 |
y-3 | 6 | 1 | 2 | 3 |
=>
x | 2 | 7 | 4 | 3 |
y | 9 | 4 | 5 | 6 |
=> Các cặp (x;y) là: (2;9); (7;4); (4;5); (3;6).
c. => x.(y-1)=5
=>
x | 5 | 1 |
y-1 | 1 | 5 |
=> Các cặp (x;y) là: (5;2); (1;6).
.
Câu 12. Tìm các số nguyên x; y biết:
a) xy + 2x – 3y = 14
b) 2xy + 5y – 3x = 18
tìm các cặp số tự nhiên xy
a, xy = 5x + 5y "
b, xy = 6 ( x + y )
c, xy + 2x = y + 11
a/
\(xy-5x=5y\Rightarrow x\left(y-5\right)=5y\Rightarrow x=\frac{5y}{y-5}\)với \(y\ne5\)
\(x=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)+25}{y-5}=5+\frac{25}{y-5}\)
Do x là số nguyên nên \(\frac{25}{y-5}\)phải là số nguyên hay y-5 phải là ước của 25
=> \(y-5\in\left\{-25;-5;-1;1;5;25\right\}\)\(\Rightarrow y\in\left\{-20;0;4;6;10;30\right\}\)
Thế y vào tìm x
Các câu còn lại làm tương tự
a/ xy=5x+5y
<=> xy-5x=5y <=> x(y-5)=5y => \(x=\frac{5y}{y-5}=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)}{y-5}+\frac{25}{y-5}=5+\frac{25}{y-5}.\)
Như vậy, để x là số tự nhiên thì 25 phải chia hết cho (y-5)
=> \(\hept{\begin{cases}y-5=1\\y-5=5\\y-5=25\end{cases}=>\hept{\begin{cases}y=6;x=30\\y=10;x=10\\y=30;x=6\end{cases}}}\)
.
Các câu khác làm tương tự
xy=5x+5y
<=> xy-5x-5y=0
<=> x(y-5)-5y+25=25
<=> (x-5)(y-5)=25=-1.-25=-25.-1=1.25.25.1
+) (x-5)(y-5)=-1.-25=> x=4,y=-20
+) (x-5)(y-5)=-25.-1=> x=-20,y=4
+) (x-5)(y-5)=1.25=>x=6,y=30
+) (x-5)(y-5)=25.1=>x=30,y=6
Vậy có 4 cặp (x,y) E {(4;-20),(-20;4),(6;30),(30;6)}
Bài 1: Tìm số tự nhiên n lớn nhất sao cho khi cho 364,414,539 cho n được 3 số dư bằng nhau.
Bài 2: Tìm x,y là số nguyên biết:
a)xy+3x=-2y-6
b)xy=x+y
c)xy=x-y
d)xy+y=1-2x
a)xy+3x=-2y-6
xy+3x-2y-6=0
x(y+3)-2(y+3)=0
(y+3)(x-2)=0
=>y+3=0 và x-2=0
y=-3 và x=2
Bài 5 : Tìm số tự nhiên x; y sao cho :
a) (x + y) .(x - y)=7 ( x>y)
b) x2 + y + x + xy = 11
các bạn giúp mình với
\(\left(x+y\right)\left(x-y\right)=7\)
Vì \(x+y+x-y=2x\) chẵn
⇒ \(\left[{}\begin{matrix}x+y\text{⋮}2\\x-y\text{⋮}2\end{matrix}\right.\)
⇒ \(\left(x+y\right)\left(x-y\right)\text{⋮}4\)
mà 7 không chia hết cho 4
⇒ Không tồn tại x,y
a) Vì 7 = 1.7 mà x+y > x-y
=> x+y = 7 và x-y = 1
Bạn đưa về bài toán tổng hiệu nhé!
b) x2 + y + x + xy = 11
x2 + xy + y + x = 11
x(x+y) + (y + x) = 11
(x + y) . ( x+1) = 11
Vì 11 = 1.11
=> x+y = 1 và x+1=11 hoặc x+y=11 và x+1=1
+) Với x+1 = 11 => x=10
Mà x+y = 1 => x+y=1 và x+1=11 ( vô lí)
+) Với x+1 = 1 => x=0
Mà x+y=11 => y= 11-0=11 ( thỏa mãn)
Vậy x=0 và y=11