ab+ba=154 va a-b=2
tim so a
tim so a biet ab + ba = 154 va biet a-b=2
so a la ....
a x 10 + b + b x 10 + a = 154
a x 11 + b x 11 = 154
11 x ( a + b ) = 154
a + b = 154 : 11
a + b = 14
=> a = ( 14 + 2 ) : 2 = 8
vậy a là 8
Tim ab : Biet ab + ba = 154 va a - b = 2
ab + ba = 154 và a - b = 2
10a + b + 10b + a = 154
(10a + a) + (10b + b) = 154
11a + 11b = 154
11(a + b) = 154
a + b = 154 : 11
a + b = 14
\(\Rightarrow\)a = (14 + 2) : 2 = 8
b = 8 - 2 = 6
Vậy ab = 86
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
ab+ba=154
10a+b+10b+a=154
(10a+a)+(10b+b)=154
11a+11b=154
11(a+b)=154
a+b=154/11
a+b=14
=>a=(14+2)/2=8
ab+ba=154
10a+b+10b+a=154
(10a+a)+(10b+b)=154
11a+11b=154
11 x (a+b)=154
a+b=154/11
a+b=14
=>a=(14+2)/2=8
tim a biet ab+ba=154 va a-b=2
ab+ba=154 va a-b=2
ab + ba = 154
=> 10a + b + 10b + a =154
=> 11a + 11b = 154
=> 11. ( a+b )= 154
=> a + b = 154 : 11 = 14
Mà a - b = 2
=> a = (14 + 2) : 2 = 8
=> b = 14 - 8 = 6
ab + ba = 154
10a + b +10b + a = 154
11a + 11b = 154
11(a + b) = 154
a +b = 154 : 11= 14
a = (14 + 2) : 2 = 8
b = 8 - 2 = 6
Vậy a= 8 ; b = 6
Cho a,b,c>0 t/m a+b+c=2
Tim GTLN của \(Q=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ca+2b}}\)
Ta có: $\sqrt[]{ab+2c}=\sqrt[]{ab+(a+b+c)c}=\sqrt[]{ab+ac+bc+c^2}=\sqrt[]{(c+a)(c+b)}$ (do $a+b+c=2$)
Nên $\dfrac{ab}{\sqrt[]{ab+2c}}=\dfrac{ab}{\sqrt[]{(c+a).(c+b)}}=ab.\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}}$
Áp dụng bất đẳng thức Cauchy cho $\dfrac{1}{a+c};\dfrac{1}{b+c}>0$ có:
$\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}} \leq \dfrac{1}{2}.(\dfrac{1}{a+c}+\dfrac{1}{b+c})$
Nên $\dfrac{ab}{\sqrt[]{ab+2c}} \leq \dfrac{1}{2}.ab.(\dfrac{1}{a+c}+\dfrac{1}{b+c})= \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})$
Tương tự ta có: $\dfrac{bc}{\sqrt[]{bc+2a}} \leq \dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})$
$\dfrac{ca}{\sqrt[]{ca+2b}} \leq \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})$
Nên $Q \leq \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})+\dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})+ \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}.(\dfrac{b(a+c)}{a+c}+\dfrac{a(b+c)}{b+c}+\dfrac{c(a+b)}{a+b}=\dfrac{1}{2}.(a+b+c)=1$ (do $a+b+c=2$)
Dấu $=$ xảy ra khi $a=b=c=\dfrac{2}{3}$
ab+ba=154 , a-b=2 Tìm a
ab + ba = 154
10 x a + b + 10 x b + a = 154
11 x a + 11 x b = 154
11 x ﴾ a+b﴿ = 154
a+b = 14 a =
﴾14 + 2﴿ : 2 = 8
Vậy a = 8
AB+BA=154 biết A-B=2
A=?
ab+ba=154
10a+b+10b+a=154
11a+11b=154
11(a+b)=154
a+b=154:11
a+b=14
Vì a+b=14;a-b=2
a là:
(14+2):2=8
bn bấm vào câu hỏi tương tự nhé
a = 8
nhớ k cho mik nha
AB + BA = 154
10A + B + 10B + A = 154
(10A + A) + (10B + B) = 154
11A + 11B = 154
11(A + B) = 154
A + B = 154 : 11
A + B = 14
A = (14 + 2) : 2
A = 8
tìm a biết ab+ba=154 và a-b=2
ab + ba=154
(10*a+b)+(10*b+a)=154
11*a+11*b=154
11*(a+b)=154
=> a+b=14
Vậy a=(14+2):2=8
a=8 đó
tick mình nha