CMR:
a)A=2+22+23+...+230 chia hết cho 7
b)Nếu p là SNT lớn hơn 3 thì p2-1 chia hết cho 24
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
1:a,tìm các số có 3 chữ số chia hết cho 7 và tổng của các chữ số của nó cũng chia hết cho 7
b, CMR: nếu a ;a+k;a+2k là các số nguyên tố lớn hơn ba thì k chia hết cho 6
ko phải violympic toán đâu mà chỉ HSG thôi
a) Cho a là số nguyên tố lớn hơn 6. CMR: \(a^2-1\)chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\)chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\)chia hết cho 240
a) x+ 199 là số nguyên tố lớn nhất.
b) cho A =923 +5. 343 . chứng minh A chia hêta cho 32.
c) Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p -1).(p+1) chia hết cho 24
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a)Cho A =9^23+5x3^43.Chứng minh A chia hết cho 32
b)Chứng minh nếu p là số nguyên tố lớn hơn 3 thì (p-1)x(p+1) chia hết cho 24
GIÚP MÌNH VỚI.TÍ NỮA MÌNH PHẢI NỘP RỒI.TÌM GOOGLE MÀ K THẤY.AI GIẢI NHANH VÀ ĐÚNG NHẤT MÌNH TICK CHO NHÉ
b)
P là số nguyên tố lớn hơn 3
=> p không chia hết cho 3
=> p chia 3 dư 1 hoặc p chia 3 dư 2
=> p=3K+1 hoặc p=3K+2 (K\(\in\)\(ℕ^∗\))
+ p=3K+1
(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)
+p=3K+2
(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)
Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)
Ta có: p nguyên tố lớn hơn 3
=> P là số lẻ
p-1 là số chẵn
p+1 là số chẵn
=> (p-1).(p+1) chia hết cho 8 (b)
Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24
Chứng tỏ nếu a nguyên tố lớn hơn 3 thì a^2-1 chia hết cho 24
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
N là số tự nhiên lớn hơn 1. Nếu cộng thêm 1 thì N chia hết cho 2, nếu cộng thêm 2 thì N chia hết cho 3, nếu cộng thêm 3 thì N chia hết cho 4, nếu cộng thêm 4 thì N chia hết cho 5, nếu cộng thêm 5 thì N chia hết cho 6, nếu cộng thêm 6 thì N chia hết cho 7. Tìm số N.
https://olm.vn/hoi-dap/detail/1317447057.html " VÀO ĐI MAN BÀI I HỆT YOU IK "
Vì cộng thêm 1 thì n chia hết cho 2, cộng thêm 2 thì n chia hết cho 3, cộng thêm 3 thì n chia hết cho 4, cộng thêm 4 thì n chia hết cho 5, cộng thêm 5 thì n chia hết cho 6, cộng thêm 6 thì n chia hết cho 7 nên ta có : n chia cho 2 dư 1, n chia cho 3 dư 2, n chia cho 4 dư 3, n chia cho 5 dư 4, n chia cho 6 dư 5 và n chia cho 7 dư 6
\(\Rightarrow\)n-1\(⋮\)2, n-2\(⋮\)3, n-3\(⋮\)4, n-4\(⋮\)5, n-5\(⋮\)6 và n-6\(⋮\)7
\(\Rightarrow\)n-1+2\(⋮\)2, n-2+3\(⋮\)3, n-3+4\(⋮\)4, n-4+5\(⋮\)5, n-5+6\(⋮\)6 và n-6+7\(⋮\)7
\(\Rightarrow\)n-1 chia hết cho cả 2,3,4,5,6,7
\(\Rightarrow\)n-1\(\in\)BC(2,3,4,5,6,7)
Ta có : 2=2
3=3
4=22
5=5
6=2.3
7=7
\(\Rightarrow\)BCNN(2,3,4,5,6,7)=22.3.5.7=420
\(\Rightarrow\)BC(2,3,4,5,6,7)=B(420)={0;420;840;1260;...}
Mà 1<n
n\(\in\){421;841;1261;...}
Vậy n\(\in\){421;841;1261;...}