Cho 3 số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=2\left(a+b++c\right)\)
Tìm max T = \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
Cho 3 số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=2\left(a+b+c\right)\)
Tìm min của \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
Câu hỏi hơi xàm
Do a;b;c không âm \(\Rightarrow\frac{a}{a+1}\ge0\) ; \(\frac{b}{b+1}\ge0\); \(\frac{c}{c+1}\ge0\)
\(\Rightarrow T\ge0\)
\(T_{min}=0\) khi \(a=b=c=0\)
Cho a,b,c là 3 số thực không âm thỏa mãn a + b+ c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) 2.CMR: \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
cho a,b,c là các số thực phân biệt , không âm thỏa mãn a2+b2+c2 =3 .Tìm giá trị nhỏ nhất của biểu thức :
S=\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)
Cho a,b,c là các số thực không âm thỏa mãn \(a^2\cdot b^2+c^2\cdot b^2+1\le3b\)
Tìm GTNN của biểu thức P=\(\frac{1}{\left(a+1\right)^2}+\frac{4\cdot b^2}{\left(1+2\cdot b\right)^2}+\frac{8}{\left(c+3\right)^2}\)
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
3. Áp dụng cô si ta có
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c=1\)
Lại có:
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
⇒ P ≥ \(2020.1+1=2021\)
Vậy Pmin = 2021 khi và chỉ khi a = b = c =1/3
1 . Cho 2 số thực a , b thỏa mãn a + b = 20 . Tìm min \(T=a^3+b^3\)
2 . a , Tìm các số a , b , c thỏa mãn : \(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
b , Cho a + 2b = 1 . Tìm max của ab .
1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)
\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)
\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)
2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)
\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
b,sai đề
Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)
\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)
\(T\ge20.20^2-6.100=7400\)
b. \(1=\left(a+2b\right)^2\ge4.a.2b=8ab\)
\(\Rightarrow ab\le\frac{1}{8}\)
Dấu = xảy ra khi \(a=\frac{1}{2}\);\(b=\frac{1}{8}\)