Tìm giá trị nhỏ nhất của
A=\(\overline{\frac{abc}{a+b+c}}\)+2009(với a,b,c là chữ số,a khác 0)
Tìm giá trị nhỏ nhất
A=\(\frac{\overline{abc}}{a+b+c}\)+2009(với a,b,c là chữ số,a khác 0)
Tìm giá trị nhỏ nhất
A=\(\frac{\overline{abc}}{a+b+c}+2019\) với a,b,c là chữ số, a khác 0
\(\text{Xét số tự nhiên \overline{abc} tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu t}hứ:P=\dfrac{\overline{abc}}{a+b+c}\)
xét số tự nhiên \(\overline{abc}\). Tìm giá trị lớn nhất và giá trị nhỏ của biểu thức P=\(\dfrac{\overline{abc}}{a+b+c}\)
giải giúp mình.
\(P=\dfrac{100a+10b+c}{a+b+c}\le\dfrac{100a+100b+100c}{a+b+c}=100\)
\(P_{max}=100\) khi \(b=c=0\)
Mặt khác ta có \(\left\{{}\begin{matrix}a\ge1\\c\le9\end{matrix}\right.\) \(\Rightarrow9a\ge c\Rightarrow90a\ge10c>9c\)
\(\Rightarrow P=\dfrac{10a+90a+10b+c}{a+b+c}>\dfrac{10a+9c+10b+c}{a+b+c}=10\)
Hay \(P-10>0\)
Ta cần tìm số k lớn nhất sao cho: \(\dfrac{100a+10b+c}{a+b+c}\ge k\) đồng thời \(10< k\le100\)
\(\Leftrightarrow100a+10b+c\ge ka+kb+kc\)
\(\Leftrightarrow\left(100-k\right)a\ge\left(k-10\right)b+\left(k-1\right)c\)
Mà \(\left\{{}\begin{matrix}\left(100-k\right)a\ge100-k\\\left(k-10\right)b+\left(k-1\right)c\le\left(k-10\right).9+\left(k-1\right).9=18k-99\end{matrix}\right.\)
\(\Rightarrow100-k\ge18k-99\Rightarrow k\le\dfrac{199}{19}\)
\(\Rightarrow k=\dfrac{199}{19}\)
Hay \(P_{min}=\dfrac{199}{19}\) khi \(\overline{abc}=199\)
Tìm giá trị lớn nhất của \(\overline{abcdefghi}\cdot i\) biết \(\overline{abcdefghi}+\overline{bcdefghi}+\overline{cdefghi}+\overline{defghi}+\overline{efghi}+\overline{fghi}+\overline{ghi}+\overline{hi}+i\) có tổng là số có 9 chữ số ( các chữ số a; b; c; d; e; f; g; h; i đều khác nhau và khác 0 ).
Cho tổng A=(a+b)-(c+d+e) trong đó a,b,c,d,e là các số nguyên khác nhau từ 1 đến 2009.
Tìm giá trị lớn nhất của A
Tìm giá trị nhỏ nhất của A
A đạt giá trị lớn nhất khi : a = 2009 ; b= 2008 ; c= 1 ; d= 2 ; e= 3
=> A = (2009 +2008) - (1+2+3)
A= 4011
A giá trị nhỏ nhất khi : a= 1 ; b =2; c= 2009 ; d= 2008 ; e= 2007
=> A= (1+2) - (2009+2008+2007)
A= -6021
bài toán cuarbanj rất rất hay đó Cao Huyền My.
A=\(\frac{\overline{abc}}{a+b+c}\)+2009(với a,b,c là chữ số,\(a\ne b\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\frac{\overline{ab}}{a+b}\)(a,b là chữ số, ab là số có 2 cs)
\(T=\frac{ab}{a+b}\) ( ĐK : \(a;b\in N;0< a,b< 10\)
\(=\frac{10a+b}{a+b}\)
\(=1+\frac{9a}{a+b}\)
\(=1+\frac{9}{\frac{a+b}{a}}\)
\(=1+\frac{9}{1+\frac{b}{a}}\)
Để T đạt GTNN thì \(\frac{9}{1+\frac{b}{a}}\) đạt GTNN
\(\Rightarrow1+\frac{b}{a}\) đạt GTLN
\(\Rightarrow\) \(\frac{b}{a}\) đạt GTLN
\(\Rightarrow\) b lớn nhất ; a nhỏ nhất
\(\Rightarrow a=1;b=9\)
T=\(\frac{19}{1+9}=\frac{19}{10}=1,9\)
Vậy GTNN T = 1,9 khi và chỉ khi a = 1 ; b = 9
\(\frac{\overline{ab}}{a+b}=\frac{10a+b}{a+b}=\frac{9a+\left(a+b\right)}{a+b}=\frac{9a}{a+b}+1=\frac{9}{1+\frac{b}{a}}+1\)
Vì a,b là các chữ số, a khác 0 nên \(\frac{b}{a}\le9\Rightarrow1+\frac{b}{a}\le10\Rightarrow\frac{9}{1+\frac{b}{a}}\ge\frac{9}{10}\Rightarrow\frac{9}{1+\frac{b}{a}}+1\ge\frac{9}{10}+1=\frac{19}{10}\)
Vậy \(T_{min}=\frac{19}{10}\Leftrightarrow\frac{b}{a}=9\Leftrightarrow\hept{\begin{cases}b=9\\a=1\end{cases}}\)
Cho a,b,c là các chữ số đôi một khác nhau và khác 0.Biết \(\overline{ab}\) là số nguyên tố và \(\frac{\overline{ab}}{\overline{bc}}\) =\(\frac{b}{c}\).Tìm số \(\overline{abc}\)
Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.