Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Đạt
Xem chi tiết
Kyotaka Ayanokouji
Xem chi tiết
Huỳnh Nguyên Khôi
Xem chi tiết
Nguyễn Trần Quốc Huy
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 15:47

\(P=\dfrac{100a+10b+c}{a+b+c}\le\dfrac{100a+100b+100c}{a+b+c}=100\)

\(P_{max}=100\) khi \(b=c=0\)

Mặt khác ta có \(\left\{{}\begin{matrix}a\ge1\\c\le9\end{matrix}\right.\) \(\Rightarrow9a\ge c\Rightarrow90a\ge10c>9c\)

\(\Rightarrow P=\dfrac{10a+90a+10b+c}{a+b+c}>\dfrac{10a+9c+10b+c}{a+b+c}=10\)

Hay \(P-10>0\)

Ta cần tìm số k lớn nhất sao cho: \(\dfrac{100a+10b+c}{a+b+c}\ge k\) đồng thời \(10< k\le100\)

\(\Leftrightarrow100a+10b+c\ge ka+kb+kc\)

\(\Leftrightarrow\left(100-k\right)a\ge\left(k-10\right)b+\left(k-1\right)c\)

Mà \(\left\{{}\begin{matrix}\left(100-k\right)a\ge100-k\\\left(k-10\right)b+\left(k-1\right)c\le\left(k-10\right).9+\left(k-1\right).9=18k-99\end{matrix}\right.\)

\(\Rightarrow100-k\ge18k-99\Rightarrow k\le\dfrac{199}{19}\)

\(\Rightarrow k=\dfrac{199}{19}\)

Hay \(P_{min}=\dfrac{199}{19}\) khi \(\overline{abc}=199\)

Xem chi tiết
Cao Huyền My
Xem chi tiết
Thùy Linh
18 tháng 2 2016 lúc 9:33

A đạt giá trị lớn nhất khi : a = 2009 ; b= 2008 ; c= 1 ; d= 2 ; e= 3

=> A = (2009 +2008) - (1+2+3)

A= 4011

A giá trị nhỏ nhất khi : a= 1 ; b =2; c= 2009 ; d= 2008 ; e= 2007

=> A= (1+2) - (2009+2008+2007)

A= -6021

Thiếu gia họ Hoàng
18 tháng 2 2016 lúc 9:16

bài toán này khó quá bạn à

Đào Minh Tiến
18 tháng 2 2016 lúc 9:20

bài toán cuarbanj rất rất hay đó Cao Huyền My.

Sakai Yuji
Xem chi tiết
Xem chi tiết
Capheny Bản Quyền
10 tháng 9 2020 lúc 20:56

\(T=\frac{ab}{a+b}\)  ( ĐK : \(a;b\in N;0< a,b< 10\)

\(=\frac{10a+b}{a+b}\) 

\(=1+\frac{9a}{a+b}\) 

\(=1+\frac{9}{\frac{a+b}{a}}\) 

\(=1+\frac{9}{1+\frac{b}{a}}\) 

Để T đạt GTNN thì \(\frac{9}{1+\frac{b}{a}}\) đạt GTNN 

\(\Rightarrow1+\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) \(\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) b lớn nhất ; a nhỏ nhất 

\(\Rightarrow a=1;b=9\) 

T=\(\frac{19}{1+9}=\frac{19}{10}=1,9\) 

Vậy GTNN T = 1,9 khi và chỉ khi a = 1 ; b = 9 

Khách vãng lai đã xóa

Thanks

Khách vãng lai đã xóa
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 21:17

\(\frac{\overline{ab}}{a+b}=\frac{10a+b}{a+b}=\frac{9a+\left(a+b\right)}{a+b}=\frac{9a}{a+b}+1=\frac{9}{1+\frac{b}{a}}+1\)

Vì a,b là các chữ số, a khác 0 nên \(\frac{b}{a}\le9\Rightarrow1+\frac{b}{a}\le10\Rightarrow\frac{9}{1+\frac{b}{a}}\ge\frac{9}{10}\Rightarrow\frac{9}{1+\frac{b}{a}}+1\ge\frac{9}{10}+1=\frac{19}{10}\)

Vậy \(T_{min}=\frac{19}{10}\Leftrightarrow\frac{b}{a}=9\Leftrightarrow\hept{\begin{cases}b=9\\a=1\end{cases}}\)

Khách vãng lai đã xóa
nguyen minh phuong
Xem chi tiết
Nguyễn Thế Bảo
25 tháng 5 2016 lúc 17:37

Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

Trịnh Thục Khuê
24 tháng 6 2023 lúc 13:51

Áp dụng tính chất của dãy tỉ số bằng nhau:

ab/ac =b/c= ab-b/bc-c =10a/10b

=>b² = a.c

Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.

=> b ∈ 1; 3; 7; 9

Ta xét các chữ số:

- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau ) 

- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )

- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )

- Với b = 9 thì 9²  a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )

Vậy abc = 139.