Cho các số x,y,z thỏa mãn \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) vs x#y,z#y,z#x
Tính giá trị biểu thức A=\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
cho x,y,z là các số thức khác 0 thỏa mãn
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)=-2, \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\)=0
tìm M=\(\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}\)
cho x;y;z là các số thực và x+y+z khác 0 thỏa mãn \(\frac{x+y+3z}{7}=\frac{y+z+3x}{8}=\frac{z+x+3y}{10}=\frac{5}{x+y+z}\)
Ta có \(\frac{x+y+3z}{7}=\frac{y+z+3x}{8}=\frac{z+x+3y}{10}=\frac{x+y+3z+y+z+3x+z+x+3y}{7+8+10}\)
\(=\frac{5\left(x+y+z\right)}{25}=\frac{x+y+z}{5}=\frac{5}{x+y+z}\)(1)
Từ (1) => (x + y + z)2 = 25
=> \(\orbr{\begin{cases}x+y+z=5\\x+y+z=-5\end{cases}}\)
Khi x + y + z = 5 => \(\frac{5}{x+y+z}=1\)
=> \(\hept{\begin{cases}z+x+3y=10\\y+z+3x=8\\x+y+3z=7\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2y=10\\x+y+z+2x=8\\x+y+z+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}5+2y=10\\5+2x=8\\5+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}y=2,5\\x=1,5\\z=1\end{cases}}\)(tm)
Khi x + y + z = -5 => \(\frac{5}{x+y+z}=-1\)
=> \(\hept{\begin{cases}x+y+3z=-7\\y+z+3x=-8\\z+x+3y=-10\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2z=-7\\x+y+z+2x=-8\\x+y+z+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}-5+2z=-7\\-5+2x=-8\\-5+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}z=-1\\x=-1,5\\y=-2,5\end{cases}}\)(tm)
Vậy các cặp (x;y;z) thỏa mãn là (1,5;2,5;1) ; (-1,5;-2,5;-1)
cho các số x,y,z khác 0 thỏa mãn x+y+z=2020 và \(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\) tính giá trị biểu thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
cho các số thực x, y, z thỏa mãn x+y+z=0 và x+2>0 ; y+2>0 ; z+8>0
cmr: \(\frac{x}{x+2}+\frac{y}{y+2}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)
Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.
bạn nhập tên giống 1 người IRAN đúng không ?
Cho x, y, z là các số thực thỏa mãn \(\frac{1}{x+y}\)\(+\frac{1}{y+z}+\frac{1}{z+x}=\frac{4}{x+y+z}\). Chứng minh rằng \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Help me !
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)