cho x,y là 2 stn thỏa mãn ( x-y) ( 2x+ 2y +1)= y mũ 2 cmr ( x-y) và ( 2x+ 2y +1) là 2 snt cùng nhau
Cho x, y thỏa mãn phương trình: `2x^2+ x = 3y^2` + 1 CMR: x - y và 2x + 2y+ 1 là số chính phương
Cho x,y thuộc Z thỏa mãn x2+y2+2x(y-1)+2y là số chính phương. CMR x=y
đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)
do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương
\(\Leftrightarrow-2\left(x-y\right)=0\)
\(\Leftrightarrow x=y\)
Cho x,y là các số thực thỏa mãn x+y=1. Tính \(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)
\(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)
\(A=\left(x^4-2x^2y^2+y^4\right)-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)
\(A=\left(x^2-y^2\right)^2-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)
\(A=\left[\left(x-y\right)\left(x+y\right)\right]^2-2\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)
\(A=\left(x-y\right)^2-2\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)
\(A=x^2-2xy+y^2-2x^2+2xy-2y^2+x^2+y^2\)
\(A=0\)
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
Cho x,y là các số không âm thỏa mãn x,y \(\le\frac{1}{2}\) và \(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}=\frac{2}{1+2xy}\)
CMR x=y
cmr : nếu x,y là các số nguyên thỏa mãn hệ thức
2^x2+x=3y^2+y
thì (x-y),(2x+2y+1) và (3x+3y+1) là các số chính phương
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Ta có x + y + z = 1 nên z = 1 - x - y.
Bất đẳng thức cần chứng minh tương đương:
\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).
Áp dụng bất đẳng thức Cauchy - Schwarz:
\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)
\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)
Cộng vế với vế của (1), (2) ta có đpcm.
Cho hai số nguyên dương x, y thỏa mãn x 2 +y 2 +2x(y−1) +2y+1 là số chính phương. Chứng minh rằng x = y
Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\)
\(P=x^2+y^2+2xy-2x+2y+1\)
+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:
\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\),
suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.
+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)
Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)
Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.
Vậy \(x=y\) (đpcm)
(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)