Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Anh
Xem chi tiết
Vũ Tiến Manh
29 tháng 9 2019 lúc 18:37

Bài 1

a) M đối xứng với D qua AB nên MB=BD và AB vuông góc với MD. Ta thấy Am vừa là đường trung tuyến vừa là đường trung trực nên tam giác AMD cân ở A nên AM=AD

Tương tự ta chứng minh được tam giác AEM cân ở A nên AM=AE

=>AE=AD=AM

b)Gọi I là điểm giao của AB và MD, K là giao của AC và ME

tam giác AMD cân có AB là đường trung trực nên cũng là đường phân giác của góc MAD nên góc DAB=gócBAM

tam giác MAE cũng vậy nên góc MAC=gócEAC

vậy góc DAE=góc DAB+ góc BAM + góc MAC +góc CAE= 2(góc BAM+ goc MAC)=2.70=140 độ

bài 2

a) Tương tự phần a câu 1, vì H đối xứng với M qua BC lên tam giác BHM là tam giác cân ở B nên BH=BM

và tương tự tam giác CHM cân ở C nên CM=CH

2 tam giác BHC và BMC có cạnh chung BC và 2 cạnh tương ứng bằng nhau(BH=BM,CH=CM) nên là tam giác bằng nhau

b)H là trực tâm lên HA=HC nên góc HAC=góc HCA, tương tự HA=HB nên góc HAB=góc HBA=> góc HCA+góc HBA= góc HAC+ góc HAB=60

xét tam giác ABC

góc BAC+ (góc HCA+góc HCB)+(góc HBA+góc HBC)=180 =>góc HCB+ góc HBC= 60=> góc BHC=180-60=120

tam giác BHC bằng tam giác BMC nên góc BMC=góc BHC= 120

Cổ Thiên
Xem chi tiết
thu hà
Xem chi tiết
Janku2of
20 tháng 7 2016 lúc 16:24

khó quá trời

Cổ Thiên
Xem chi tiết
Quỳnh Trang Phan
Xem chi tiết
chuột michkey
Xem chi tiết
Huyền Trân
Xem chi tiết
Jennie Kim
21 tháng 9 2019 lúc 20:18

tự kẻ hình :

AB là đường trung trực của MD (gt)

=> AM = AD (đl)      (1)

AC là đường trung trực của EM (gt)

=> AE = AM (đl)      (2)

(1)(2) => AE = AD 

Kudo Shinichi
21 tháng 9 2019 lúc 20:29

A B C M D E 1 2 3 4

a. Vì D đối xứng với M qua trục AB

\(\Rightarrow\) AB là đường trung trực MD.

\(\Rightarrow\) AD = AM (tính chất đường trung trực) (1)

\(\Rightarrow\) Vì E đối xứng với M qua trục AC

\(\Rightarrow\) AC là đường trung trực của ME

\(\Rightarrow\) AM = AE ( tính chất đường trung trực) (2)

\(\Rightarrow\) Từ (1) và (2) suy ra : AD = AE

b ) AD = AM suy ra \(\Delta AMD\) cân tại A có \(AB\perp MD\)

nên AB cũng là đường phân giác của góc MAD

\(\Rightarrow\widehat{A_1}=\widehat{A}_2\)

AM = AE suy ra \(\Delta AME\) cân tại A có \(AC\perp ME\) nên AC cũng là đường phân giác của \(\widehat{MAE}\)

\(\Rightarrow\widehat{A}_3=\widehat{A}_4\)

\(\widehat{DAE}=\widehat{A}_1+\widehat{A}_2+\widehat{A}_3+\widehat{A}_4\)

                \(=2\left(\widehat{A}_2+\widehat{A}_3\right)=2\widehat{BAC}=2.70^o=140^o\)

Chúc bạn học tốt !!!

Hoàng Huy
Xem chi tiết
Chúc Phương
17 tháng 7 2021 lúc 14:36

undefinedundefined

Sách Giáo Khoa
Xem chi tiết
Cheewin
28 tháng 4 2017 lúc 22:07

a) D đx với m qua AB

=> AB là trung trực của MD

=> AD=AM

E đx với M qua AC

=> AM=AE

=> AD=AE

b) AD=AM => tam giác ADM cân

=>góc DAB =góc MAB

tam giác AME cân

=> góc MAC= góc CAE

do đó: DAB+MAB+MAC+CAE=2(MAB+MAC)=2.70=140 độ

hay góc DAE=140 độ

Nguyen Thuy Hoa
29 tháng 6 2017 lúc 16:30

Đối xứng trục