Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B = \(\sqrt{9+4x-x^2}\)
Bài 1: Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B= \(\sqrt{9+4x-x^2}\)
Bài 2: Tìm GTLN của
a) C= \(\sqrt{x}+x\)
b) C= \(x+\sqrt{3-x}\)
Bài 3: Tìm GTNN của
a) E= \(x-\sqrt{x-2015}\)
b) F= \(\sqrt{x^2-4x+4}+\sqrt{x^2+10x+25}\)
Mọi người giúp mình với. Mình cảm ơn trước ạ!
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
tìm GTLN và GTNN
A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
B=\(\sqrt{9+4x-x^2}\)
\(\sqrt{3-x^2}\ge0\Rightarrow A\le\frac{3}{1+2.0}=3\)
\(A_{max}=3\) khi \(x=\pm\sqrt{3}\)
\(\sqrt{3-x^2}\le\sqrt{3}\Rightarrow A\ge\frac{3}{1+2\sqrt{3}}\)
\(A_{max}=\frac{3}{1+2\sqrt{3}}\) khi \(x=0\)
\(B=\sqrt{13-\left(x-2\right)^2}\ge0\)
\(B_{min}=0\) khi \(\left(x-2\right)^2=13\Leftrightarrow x=2\pm\sqrt{13}\)
\(\sqrt{13-\left(x-2\right)^2}\le\sqrt{13}\)
\(B_{max}=\sqrt{13}\) khi \(x=2\)
Tìm GTLN,GTNN của
a, \(A=\sqrt{x-2}+\sqrt{4-x}\)
b, \(B=\frac{3-4x}{x^2+1}\)
b,\(GTNN\)
\(\frac{3-4x}{x^2+1}=\frac{\left(x^2-4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
GTNN của B =-1 tại x=2
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
a) Tìm GTLN của biểu thức : \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức : \(\sqrt{x^2-4x+3}\).
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1