Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Quỳnh Hoa
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Hoàng Minh Hoàng
30 tháng 7 2017 lúc 21:13

Bạn trừ đi rồi gộp thành hằng đẳng thức là được nhé

Nguyễn huy hoàng
Xem chi tiết
Mr Lazy
29 tháng 7 2016 lúc 11:01

a,

\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
phạm thanh duy
4 tháng 8 2019 lúc 8:01

 \(pt< =>\left(x-1-2\sqrt{x-1}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(< =>\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

..............................

A^2 + B^2 = 0 <=> A= 0 và B=0

Quỳnh Hoa Lenka
Xem chi tiết
Akai Haruma
11 tháng 12 2017 lúc 23:54

Lời giải:

PT \(\Leftrightarrow 2x+2y+2z-12=2\sqrt{x-3}+2\sqrt{y-4}+4\sqrt{z-5}\)

Áp dụng BĐT AM-GM ta có:

\(2\sqrt{x-3}=2\sqrt{\frac{1}{2}(2x-6)}\leq \frac{1}{2}+2x-6\)

\(2\sqrt{y-4}=2\sqrt{\frac{1}{2}(2y-8)}\leq \frac{1}{2}+2y-8\)

\(4\sqrt{z-5}=2\sqrt{2(2z-10)}\leq 2+2z-10\)

Cộng theo vế:

\(2\sqrt{x-3}+2\sqrt{y-4}+4\sqrt{z-5}\leq 2x+2y+2z-21\)

\(\Leftrightarrow 2x+2y+2z-12\leq 2x+2y+2z-21\)

\(\Leftrightarrow 9\leq 0\) (vô lý)

Do đó pt vô nghiệm.

Nguyễn Ngọc Anh
Xem chi tiết
Trí Tiên亗
2 tháng 9 2020 lúc 9:53

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

Khách vãng lai đã xóa
Dương Thanh Ngân
Xem chi tiết
đặng thị phương thảo
Xem chi tiết