Tìm x,y,z, biết :
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Tìm x,y,z biết:
x + y + z - 6 = \(\sqrt{x-3}+\sqrt{y-4}+2\sqrt{z-5}\)
Tìm x, y, z nguyên thỏa mãn x+y+z+4=\(2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Bạn trừ đi rồi gộp thành hằng đẳng thức là được nhé
Tìm các số x,y,z biết:
a,
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
b,
\(x+y+z+9=2\sqrt{x-2}+6\sqrt{y-3}+4\sqrt{z-9}\)
giải hộ mình vs :3
a,
\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
tìm x, y, z biết x+y+z+8=\(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
TÌm x,y,z bik
x+y+z+5=2\(\sqrt{x-1}+4\sqrt{y-3}+6\sqrt{z-5}\)5
\(pt< =>\left(x-1-2\sqrt{x-1}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(< =>\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
..............................
A^2 + B^2 = 0 <=> A= 0 và B=0
Tìm x,y,z biết:
x + y + z - 6 = \(\sqrt{x-3}+\sqrt{y-4}+2\sqrt{z-5}\)
Lời giải:
PT \(\Leftrightarrow 2x+2y+2z-12=2\sqrt{x-3}+2\sqrt{y-4}+4\sqrt{z-5}\)
Áp dụng BĐT AM-GM ta có:
\(2\sqrt{x-3}=2\sqrt{\frac{1}{2}(2x-6)}\leq \frac{1}{2}+2x-6\)
\(2\sqrt{y-4}=2\sqrt{\frac{1}{2}(2y-8)}\leq \frac{1}{2}+2y-8\)
\(4\sqrt{z-5}=2\sqrt{2(2z-10)}\leq 2+2z-10\)
Cộng theo vế:
\(2\sqrt{x-3}+2\sqrt{y-4}+4\sqrt{z-5}\leq 2x+2y+2z-21\)
\(\Leftrightarrow 2x+2y+2z-12\leq 2x+2y+2z-21\)
\(\Leftrightarrow 9\leq 0\) (vô lý)
Do đó pt vô nghiệm.
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
tìm x,y,z biết câu a \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\) câu b \(x+y+4=2\sqrt{x}+4\sqrt{y-1}\) câu c \(x+y+z=2\left(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\right)+35\)