C/m rằng vs a^3 + 2ab - a^2 +8b^3 - 4b^2=0 và a khác 0 thì a=1-2b
cho a+2b=1, a\(\ne\) 0
chứng minh : \(a^3+8b^3+2ab-a^2-4b^2=0\)
a + 2b = 1 => 2b = 1 - a
Biến đổi VT:
\(a^3+8b^3+2ab-a^2-4b^2\)
\(=a\left(a^2+2b-a\right)+\left(2b\right)^3-\left(2b\right)^2\)
\(=a\left(a^2+1-a-a\right)+\left(2b\right)^2\left(2b-1\right)\)
\(=a\left(a^2-2a+1\right)+\left(1-a\right)^2\left(1-a-1\right)\)
\(=a\left(a-1\right)^2-a\left(1-a\right)^2\)
\(=a\left[\left(a-1\right)^2-\left(1-a\right)^2\right]\)
\(=a\left(a-1+1-a\right)\left(a-1-1+a\right)\)
\(=0\)(đpcm)
Cho a,b>0 và a + 2b = 1. Chứng minh rằng: \(\frac{1}{8ab}+\frac{2ab}{a^2+4b^2}\ge\frac{3}{2}\)
\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)
áp dụng bđt AM-GM , a,b> 0
\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)
cho các số a,b,c là các số thực khác không thoả mãn điều kiện 1/a+1/2b+1/c=0. Tính giá trị M=2bc/a^2+ca/4b^2+2ab/c^2
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)
Cho a3+4a2b=2b3-5ab2 và a khác b khác 0.
Giá trị \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab^2}=?\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
câu 1: GTNN của b/thức : Q =a^2 + 4b^2 -10a là:
câu 2: hình vuông ABCD có CD 3 căn bậc 2 của 2.khi đó độ dài của đường chéo hình vuông là?
câu 3 :nếu 1/a-1=1 và a,b là số thực khác 0 và 2a+ 3ab -2b khác 0 .GT của b/thức P=(a-2ab-b)/2a+3ab-b là ?
Câu 1:
\(Q=a^2+4b^2-10a\)
\(=a^2-10a+25+4b^2-25\)
\(=\left(a-5\right)^2+4b^2-25\)
\(\left(a-5\right)^2\ge0\)
\(4b^2\ge0\)
\(\Rightarrow\left(a-5\right)^2+4b^2-25\ge-25\)
Dấu ''='' xảy ra khi \(\left[\begin{array}{nghiempt}a-5=0\\b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=5\\b=0\end{array}\right.\)
\(MinQ=-25\Leftrightarrow a=5;b=0\)
Câu 2:
Tam giác DAC vuông tại D có:
\(AC^2=CD^2+AD^2\)
\(=CD^2+CD^2\) (ABCD là hình vuông)
\(=2CD^2\)
\(=2\times\left(3\sqrt{2}\right)^2\)
\(=2\times9\times2\)
\(=36\)
\(AC=\sqrt{36}=6\left(cm\right)\)
Câu 3:
\(\frac{1}{a-1}=1\)
\(a-1=1\)
\(a=1+1\)
\(a=2\)
Thay a = 2 vào P, ta có:
\(P=\frac{2-2\times2\times b-b}{2\times2+3\times2\times b-b}\)
\(=\frac{2-4b-b}{4+6b-b}\)
\(=\frac{2-5b}{4+5b}\)
cho a,b,c khác 0 thỏa mãn 2ab=c^2,ac=4b^2.Tính giá trị biểu thức 5a+4b+3c/3a+2b+c
cho a,b,c,d khác 0 và b^2 =ac;c^2=bd.chứng minh rằng a^3+2b^3-3c^3/b^3+2c^3-3d^3=(a+4b-5c/b+4c-5d)^3
cho a,b,c>0. CMR
\(\frac{2ab}{3a+8b+6c}+\frac{3bc}{3b+6c+4}+\frac{3ac}{9c+4a+4b}\le\frac{a+2b+3c}{2}\)
Cho a>0, b>0, a + 2b = 1. Chứng minh
1÷8ab + 2ab ÷ a2 + 4b2 >= 3÷2