\(\frac{x}{9}=\frac{y}{6}=\frac{z}{y},2x+y+z=15,5\)
Tìm x,y,z biết
Tìm x,y,z biết:
Help me, làm hoài không ra
\(\frac{x}{9}=\frac{y}{6}=\frac{z}{y},2x+y+z=15,5\)
Tìm x,y,z biết:
\(\frac{z}{x+y-3}=\frac{y}{x+z-6}=\frac{x}{y+z+9}=x+y+z\)
Tìm x,y,z biết :
b, \(\frac{x}{5}=\frac{y}{5}=\frac{z}{7}\) và y-z=39
c, \(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)và 2x+3y+4z=9
Ta có :
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
\(=\)\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+3+5\right)}{4+12+24}\)\(=\)\(\frac{9+10}{40}\)\(=\frac{19}{40}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\\y=\frac{19}{40}\\z=\frac{19}{40}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\cdot2\\y=\frac{19}{40}\cdot4\\z=\frac{19}{40}.6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0,95\\y=1,9\\z=2,85\end{cases}}\)
Vậy ...
P/s : sai thì thôi =.=
Tìm x, y, z biết rằng:
a) \(\frac{2x+5}{5}=\frac{y+6}{4}\) và 5x - 3y = - 64
b) \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) và x + y + z = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y=z\)
Mà \(x+y+z=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(\Rightarrow x=y=z=2\)
Vậy \(x=y=z=2\)
Tìm x,y,z biết \(\frac{3}{7}x=\frac{16}{26}y=\frac{6}{19}z\) ; 2x-y-z=-6
tìm x,y,z biết:
\(\frac{x}{6}=\frac{y}{9};x=\frac{z}{2};x+y+z=27\)
Ta có : x=z/2suy ra x×1/6=z/2 × 1/6 suy ra x/6=z/12 (1)
Ta được x/6 = y/9 (2)
Từ (1) và (2) suy ra x/6=y/9 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta được
X/6 = y/9 = z/12= x+y+z/6+9+12 = 27/27 =1
Khi đó:
X/6=1 suy ra x=6
Y/9 = 1 suy ra y = 9
Z/12=1 suy ra z =12
Vậy x=6;y=9;z=12
1. tìm x, y,z biết:
a. \(\frac{x}{y}=\frac{7}{20},\frac{y}{z}=\frac{5}{8}\) và 2x + 5y - 2z = 100
b. 5x = 8y = 20z và x - y - z = 3
c. \(\frac{6}{17}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
d. \(\frac{x}{2}=\frac{y}{3},\frac{y}{5}=\frac{z}{6}\) và x - y + z= -49
Tìm x, y, z biết :
a. 5x = 8y = 20z và x - y -z = 3
b. \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)Và -x + y + z = 120
c.\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)Và x X y X z = 20
d. x . y = -30 ; y . z = 42 và z - x = -12
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
tìm x,y,z biết
\(\frac{x}{y}=\frac{2}{5};\frac{y}{z}=\frac{5}{9}\) và -x-y+z=6
x/y=2/5;x/z=5/9.Suy ra:x/2=y/5=z/9
Từ x/2=y/5=z/9.Ta áp dụng tính chất dãy tỉ số bằng nhau.Ta có
x/2=y/5=z/9=x-y+z/2-5+9=6/6=1.
Suy ra:x=2.1=2
y=5.1=5
z=9.1=9
Vậy x=2,y=5,z=9
CHÚC BẠN HỌC TỐT ^_^