Cho x/a + y/b + z/c =1 và a/x + b/y + c/z = 0 .
Chưng minh rằng x^2/a^2 + y^2/b^2 + z^2/c^2 =1
cho a+b+c=x+y+z=a/x+b/y+c/z=0 chưng minh ẫng^2+by^2+cz^2=0
Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-\left(axy+axz+byz+byx+czx+czy\right)=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=xyc+yza+zxb=0\). (Do x + y + z = 0 và a + b + c = 0).
dễ hiểu thế mà ddoof N---------------------------------------------------------------------------------------------------------g----------------------------------------------------------------------------------------------u
x/a+y/b+z/c=1 và a/z+b/x+c/x=0 chứng minh rằng x^2/a^2+y^2/b^2+z^2/c^2=1
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
x/a+y/b+z/c=1 và a/z+b/x+c/x=0 chứng minh rằng x^2/a^2+y^2/b^2+z^2/c^2=1
cho a,b,cvà x,y,x là các số khác nhau và khác không chứng minh rằng nếu :a/x+b/y+c/x=0 và x/a+y/b+z/c=1 thì x^2/a^2+y^2/b^2+z^2/c^2=1
Cho các số thực x, y, z, a, b, c khác 0 thỏa mãn x/a = y/b = z/c. Chứng minh rằng: x^2 + y^2 + z^2 / (a^x + b*y + c*z)^2 = 1/ a^2 + b^2 + c^2
Cho các số thực x, y, z, a, b, c khác 0 thỏa mãn x/a = y/b = z/c. Chứng minh rằng: x^2 + y^2 + z^2 / (a^x + b*y + c*z)^2 = 1/ a^2 + b^2 + c^2
a) tìm x,y,z thỏa mãn pt sau:9x^2+y^2+2x^2-18x+4z-6y+20=0
b)cho x/a+y/b+z/c=1 và a/x+b/y+c/z=0. Chứng minh rằng x^2/a^2+y^2/b^2+z^2/c^2=1
Bài 1: a;b;c > 0 và abc = 1
Chứng minh : \(\dfrac{a}{b^4+c^4+a}+\dfrac{b}{a^4+c^4+b}+\dfrac{c}{a^4+b^4+c}\le1\)
Bài 2: x;y;z > 0 và x + y + z = 2
Chứng minh : \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
1.
Ta có:
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\left(x^2+y^2\right)xy\)
Đặt vế trái của BĐT cần chứng minh là P, áp dụng bồ đề vừa chứng minh ta có:
\(P\le\dfrac{a.abc}{bc\left(b^2+c^2\right)+a.abc}+\dfrac{b.abc}{ca\left(c^2+a^2\right)+b.abc}+\dfrac{c.abc}{ab\left(a^2+b^2\right)+c.abc}\)
\(P\le\dfrac{a^2.bc}{bc\left(a^2+b^2+c^2\right)}+\dfrac{b^2.ac}{ca\left(a^2+b^2+c^2\right)}+\dfrac{c^2.ab}{ab\left(a^2+b^2+c^2\right)}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)