cho so huu ti a/b va c/d voi b>0 chung to rang neu a/b > c/d thì a/b<a+c/b+d <c/d
Cho hai so huu ti a/b va c/d (b>0, d>0). Chung to rang :
a, Neu a/b < c/d thi ad<cd
b, Neu ad<bc thi a/b < c/d
a)Chung to rang neu a/b <c/d (b<0,d<0) thi a/b < a+c/d+b < c/d
b)Hay viet 3 so huu ti xen giua -1/3 va -1/4
\(\frac{a}{b}< \frac{c}{d}\) => ad < bc
=> ad + ab < bc + ab
=> a(b + d) < b(a + c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> ad < bc
=> ad + cd< bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> đccm
b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\); \(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)
ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745
cho so huu ti a/b voi a,b thuoc Z, b>0. Chung minh rang: neu co a<b va >0 thi a/b<a+c/b+c
Ta có a<b
=>ac<bc (c>0)
=> ac+ ab < bc+ ab
=> a(b+c) < b(a+c)
=> a/b< a+c/b+c(đpc/m)
cho so huu ti a/b voi b>0. chung to rang
neu a/b<1 thi a<b va nguoc lai neu a<b thi a/b <1
giup minh voi
cho f(x)= ax^2+bx+c voi a,b,c la cac so huu ti
chung to rang f(-2).f(3) be hon bang 0 . biet rang 13a+b+2c=0
cho a=x 3y, b=x 2y 2, c=xy 3 .Chung minh rang voi moi so huu ti x va y ta luon duoc ax+b 2-2x 4y 4=0
gia su a,b la 2 so huu ti duong va khong phai la binh phuong cua mot so huu ti
chung minh rang :neu x,y la hai so huu ti sao cho \(m=x\sqrt{a}+y\sqrt{b}\)la so huu ti thi m=0
cho hai so huu ti a/b va c/d voi mau duong, trong do a/b < c/d . chung minh rang :
a . ad < bc b . a/b < a+c / b+d < c/d
giup mk nha
a, Vì b,d > 0 -> ad/bd < cb/bd -> ad<bc
b, ad<bc -> ad/bd < bc/bd ( vì b,d > 0 => bd>0) => a/b < c/d
a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
b) \(ad< bc\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(ad< bc\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
cho a,b,c,d thuoc Z va 0<a<b<c<d chung minh rang neu a/bc/d thi a+d>b+c