xác định hệ số a,b sao cho đa thức x4+ax3+bx+b chia hết cho đa thức x2-1
Tìm a,b để đa thức : x4+ax3+bx-1 chia hết cho x2-1
MN làm giúp mình nha càng nhanh thì càng xing gái đẹp trai :3333
\(x^4+ax^3+bx-1=\left(x^2-1\right)\left(x^2+1\right)+ax\left(x^2-1\right)+\left(a+b\right)x\)
\(\Rightarrow x^4+ax^3+bx-1\) chia hết cho \(x^2-1\) khi \(a+b=0\)
\(\Leftrightarrow b=-a\)
(Chỉ cần a; b là 2 số đối nhau là đủ, có vô số cặp a;b thỏa mãn đề bài, ví dụ (a;b)=(1;-1); (2;-2); (3;-3)... đều đúng)
Xác định hệ số a,b để đa thức x4 + 1 chia hết cho đa thức x2 + ax + b
Đặt phép chia sau đo tính số dư
Vì x4+1 chia hết cho x2+ax +b ∀ x
⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =
Xác định các hệ số a và b sao cho đa thức x4 + ax + bx + b chia hết cho đa thức x2 - 1
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
\(f\left(x\right)=ax^3+bx+c\)
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định hệ số a,b sao cho đa thức :
f(x)=ax3 + bx - 24 chia hết cho (x+1) và (x+3)
\(ax^3+bx-24=\left(x+1\right)Q\left(x\right)\)(1)
\(ax^3+bx-24=\left(x+3\right)P\left(x\right)\) (2) (P(x),Q(x) là các thương)
Thay x = -1 vào (1) và x = -3 vào (2), ta có:
\(\hept{\begin{cases}a.\left(-1\right)^3+b.\left(-1\right)-24=0\\a.\left(-3\right)^3+b.\left(-3\right)-24=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-a-b=24\\-27a-3b=24\end{cases}}\Rightarrow\hept{\begin{cases}-3a-3b=72\\-27a-3b=24\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-3a-3b-\left(-27a-3b\right)=72-24\\-a-b=24\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}24a=48\\a+b=-24\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-26\end{cases}}\)