cho a+b+c=0 . rút gọn:
M= a^3+b^3+c(a^2+b^2)-abc
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
cho a+b+c=0 Rút gọn M= a3+ b3+ c(a2+b2) - abc
M = (a + b)(a2 - ab + b2) + c(a2 + b2) - abc
= - c(a2 - ab + b2) + c(a2 - ab + b2) = 0
Cho a+b+c =0 rút gọn biểu thức: M=a3 + b3 + a2c + b2c - abc
\(A^3+B^3+A^2C+B^2C-ABC\)
\(=\left(A+B\right)\left(A^2-AB+B^2\right)+C\left(A^2-AB+B^2\right)\)
\(=\left(A^2-AB+B^2\right)\left(A+B+C\right)\)
\(=\left(A^2-AB+B^2\right).0\)
\(=o\)
cho (a+b+c)^2 = a^2 + b^2 +c^2 và abc khác 0
cmr bc/a^2 + ac/b^2 +ab/c^2 = 3
cho abc=1. rút gọn
a/ab+a+1 + b/bc+b+1 + c/ca+c+1
Cho a+b+c=0 . Rút gọn biểu thức :
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
Ta có :
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(M=a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)
\(=-ab\left(a+b+c\right)=0\)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
\(M=a^3+b^3+c.\left(a^2+b^2\right)-abc\)
\(M=a^3+b^3+ca^2+cb^2-abc\)
\(M=a^2.\left(a+c\right)+b^2.\left(b+c\right)-abc\)
\(M=a^2.\left(-b\right)+b^2.\left(-a\right)\)
\(M=-a^2b-b^2a\)
\(M=-ab.\left(a+b\right)\)
\(M=-ab.\left(-c\right)\)
\(M=abc\)
Tham khảo nhé~
Ta có a+b+c=0 <=> a+b=-c
M= (a+b)(a2-ab+b2)+a2c+b2c-abc
=-ca2+abc-cb2+a2c+b2c-abc
=0
Chúc học tốt!!!!
Cho a+b+c=0
Rút gọn
M=a3+b3+c(a2+b2)-abc
Ta có:M=a3+b3+c(a2+b2)-abc
=(a+b)(a2-ab+b2)-(a+b)(a2+b2)+(a+b).ab
=(a+b)(a2-ab+b2-a2-b2+ab)
=(a+b).0=0
Vậy GT của M là:0
Cho \(a+b+c=0\)
Rút gọn : \(a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(a+b+c=0\Leftrightarrow a+b=-c\) thay vào :
\(a^3+b^3+c\left(a^2+b^2\right)-abc=\left(a+b\right)^3-3ab\left(a+b\right)+c\left[\left(a+b\right)^2-2ab\right]-abc\)
\(=-c^3-3ab.\left(-c\right)+c\left[c^2-2ab\right]-abc\)
\(=-c^3+3abc+c^3-2abc-abc=0\)
Cho a + b + c = 0 .Rút gọn M = a3 + b3 + c(a2+b2)-abc
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
Cho \(a+b+c=0\)
Rút gọn \(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(=a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=-ba^2-ab^2-abc\)
\(=-ab\left(a+b+c\right)=0\)