Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm bảo duy
Xem chi tiết
Vô Danh kiếm khách
Xem chi tiết
giang
Xem chi tiết
~_~  ^~^  ^_^  {_}  +_+...
12 tháng 3 2020 lúc 16:03

Bài dễ lắm làm đi hỏi làm gì

Khách vãng lai đã xóa
Kelly gaming TV 2
12 tháng 3 2020 lúc 16:11

Lại gặp thánh troll rồi

Khách vãng lai đã xóa
Thủy Tiên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 7 2017 lúc 9:28

Ta có : 3(2x - 1)2 \(\ge0\forall x\)

           7(3y + 5)2 \(\ge0\forall x\)

Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0 

Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0 

\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)

Huyền
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 9 2021 lúc 9:36

\(a,\left(a^2-b^2\right)^2+4\left(ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\\ =a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\\ b,\left(a^2+b^2\right)\left(x^2+y^2\right)\\ =a^2x^2+a^2y^2+b^2x^2+b^2y^2\\ \left(ax+by\right)^2=a^2x^2+2axby+b^2y^2\\ \Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ne\left(ax+by\right)^2\)

Hoặc áp dụng BĐT Bunhiacopski:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Dấu \("="\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

nguyen thi dieu linh
Xem chi tiết
nguyen thi dieu linh
3 tháng 1 2017 lúc 19:19

giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....

K11B Tập thể
Xem chi tiết
Xyz OLM
30 tháng 9 2020 lúc 16:19

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 9 2020 lúc 16:35

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

Khách vãng lai đã xóa
FL.Han_
30 tháng 9 2020 lúc 16:54

a,\(x^3+y^3=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)

\(VP=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)

\(=\left(x+y\right)\left(x^2-2xy+y^2+xy\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3=VT\)

\(\Rightarrowđpcm\)

b,\(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x-y\right)^2\)

\(VT=x^3+y^3-xy\left(x+y\right)\)

\(=x^3+y^3-x^2y-xy^2\)

\(=\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)=VP\)

\(\Rightarrowđpcm\)

c,\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(VP=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

\(VT=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(\Rightarrow VP=VT\left(đpcm\right)\)

Khách vãng lai đã xóa
Mael Thụy Kha
Xem chi tiết
Trần Tuyết Như
16 tháng 7 2016 lúc 14:38

a/ \(ab-2b-3a+6=\left(ab-2b\right)-\left(3a-6\right)=b\left(a-2\right)-3\left(a-2\right)=\left(a-2\right)\left(b-3\right)\)

b/ \(ax-by-ay+bx==\left(ax+bx\right)-\left(by+ay\right)=x\left(a+b\right)-y\left(b+a\right)=\left(a+b\right)\left(x-y\right)\)

c/ \(ax+by-ay-bx=\left(ax-ay\right)+\left(by-bx\right)=a\left(x-y\right)+b\left(y-x\right)=a\left(x-y\right)-b\left(x-y\right)=\left(x-y\right)\left(a-b\right)\)

d/ \(a^2-\left(b+c\right)a+bc=a^2-ab-ac+bc=\left(a^2-ac\right)+\left(ab-bc\right)=a\left(a-c\right)+b\left(a-c\right)=\left(a-c\right)\left(a+b\right)\)e/ \(\left(3a-2\right)\left(4a-3\right)-\left(2-3a\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3\right)+\left(3a-2\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3+3a+1\right)=\left(3a-2\right)\left(7a-2\right)\)

f/ \(ax+ay+az-bx-by-bz-x-y-z=\left(ax+ay+az\right)-\left(bx+by+bz\right)-\left(x+y+z\right)\)

\(=a\left(x+y+z\right)-b\left(x+y+z\right)-\left(x+y+z\right)=\left(x+y+z\right)\left(a-b-1\right)\)

Trần Đặng Bích Trâm
Xem chi tiết
Nguyễn Tấn Phát
18 tháng 6 2019 lúc 19:43

Cho\(\frac{x}{a}=\frac{y}{b}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\end{cases}}\)

Ta thấy 

\(\left(x^2+y^2\right)\left(a^2+b^2\right)=\left(a^2k^2+b^2k^2\right)\left(a^2+b^2\right)=k^2\left(a^2+b^2\right)\left(a^2+b^2\right)=k^2\left(a^2+b^2\right)^2\)

\(\left(ax+by\right)^2=\left(a.ak+b.bk\right)^2=\left(a^2k+b^2k\right)^2=\left[k\left(a^2+b^2\right)\right]^2=k^2\left(a^2+b^2\right)^2\)

Vậy \(\left(x^2+y^2\right)\left(a^2+b^2\right)=\left(ax+by\right)^2\left(ĐPCM\right)\)

Lê Quang Phúc
18 tháng 6 2019 lúc 20:06

Có x/a = y/b => xb = ya(1) 

<=> x2b= y2a2(2)

Có (x2 + y2)(a+ b2) = x2a+ y2a2 + x2b2 + y2b2

= x2a2 + y2b2 + x2b2 + y2a2 (3).

Thay (2) vào (3) ta được: (x2 + y2)(a2 + b2) = x2a2 + y2b2 + 2x2b2 = x2a+ y2b2 + 2xbxb (4)

Thay (1) vào (4) ta có: (x2 + y2)(a2 + b2) = x2a2 + y2b2 + 2xbay = (ax + by)2 (đpcm)