Tính:
N= 1/3+2/32+....+2008/32008
Cho tổng A=1+32+34+36+...+32008. Tính giá trị biểu thức: B= 8A-32010
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
Theo đề bài ra, ta có :
A=1+3^2+3^4+3^6+....+3^2008
9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010
9A - A= (3^2+3^4+3^6+3^8+....+ 3^2010)- (1+3^2+3^4+3^6+....+ 3^2008)
8A = -1+3^2010
8A - 3^2010 = (-1)
@Nae
tính:N=1+3^2+3^3+...+3^100
ai làm đúng mình tick nha
=> N=\(\frac{\left(3^{101}-1\right)}{2}\)
Cho phép tính : 30 + 31 + 32 + 33 + ..........+ 32008 + 32009
Lấy kết quả phép tính này chia cho 8 thì số dư là bao nhiêu ?
Số số của dãy trên là:
(32009 - 30):1+1 =31980 (số)
Số cặp số của dãy là:
31980 : 2 = 15990 (cặp)
\(30+31+32+....+32008+32009\)
\(=\left(30+32009\right)+\left(31+32008\right)+...\)
\(=32039\times15990=512303610\)
Vậy \(512303610\div8=64037951\left(dư2\right)\)
Tìm y:
-y:\(\dfrac{1}{2}\)-\(\dfrac{5}{2}\)=4\(\dfrac{1}{2}\)
Tính:
N = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)....\(\dfrac{899}{900}\).\(\dfrac{960}{961}\)
S=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{10.11.12}\)+\(\dfrac{1}{11.12.13}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
CMR : Q = 1/2 x ( 72020^ 2018 - 32008^2007 ) là số nguyên chia hết cho 5
lập bảng tính:n^2=?,10<n<25
n^3=?,0<n<10
Ta thấy \(10< n< 25\Rightarrow100< n^2< 625\)\(\Rightarrow n^2=\left\{121;144;169;196;225;256;289;324;361;400;441;484;529;576\right\}\)
Ta thấy \(0< n< 10\Rightarrow n=\left\{1;2;3;4;5;6;7;8;9\right\}\)
\(\Rightarrow n^3=\left\{1;8;27;64;125;216;343;512;729\right\}\)
Tìm a,b thuộc N biết:BC[a;b]+UC[a;b]=13
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
tính:N= (202+182+162+...+42+22)-(192+172+152+...+32+12)
a) [-2008*57+1004(-86)]/[32*74+16*(-48)]
b)1+2-3-4+5+6-7-8+9+10-...+2006-2007-2008+2009
a) [ -2008 x 57 + 1004 x (-86) ] : [ 32 x 74 + 16 x (-48) ]
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +10 - ......................... + 2006 - 2007 - 2008 + 2009