Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giao Khánh Linh
Xem chi tiết
phantuananh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 7 2016 lúc 3:30

1) Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có : \(\left(x^{10}+y^{10}\right)\left(x^2+y^2\right)\ge\left(x^8+y^8\right)\left(x^4+y^4\right)\left(1\right)\)

\(\Leftrightarrow x^{12}+x^{10}y^2+y^{10}x^2+y^{12}\ge x^{12}+x^8y^4+y^8x^4+y^{12}\)

\(\Leftrightarrow x^{10}y^2+y^{10}x^2\ge x^8y^4+y^8x^4\)

\(\Leftrightarrow x^2y^2\left(x^8+y^8-x^6y^2-x^2y^6\right)\ge0\)

\(\Leftrightarrow x^2y^2\left[\left(x^8-x^6y^2\right)+\left(y^8-x^2y^6\right)\right]\ge0\)

\(\Leftrightarrow x^2y^2\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x^3-y^3\right)\left(x^3+y^3\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x-y\right)^2\left(x+y\right)^2\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\ge0\)(2)

Ta thấy : \(x^2-xy+y^2=\frac{\left(x^2-2xy+y^2\right)+x^2+y^2}{2}=\frac{\left(x-y\right)^2+x^2+y^2}{2}\ge0\)

\(x^2+xy+y^2=\frac{\left(x+y\right)^2+x^2+y^2}{2}\ge0\)  ; \(x^2y^2\left(x-y\right)^2\left(x+y\right)^2\ge0\)

Do đó (2) luôn đúng.

Vậy (1) được chứng minh. 

saadaa
Xem chi tiết
Ma Kết Đẹp Trai
Xem chi tiết
Trần Lê Quốc Hà
21 tháng 5 2017 lúc 21:28

câu a: ta có:

(x+y)=(x-y)=x(x-y)+y(x-y)

=x2 - xy +yx - y2

=(-xy+yx) + x2 - y2 = x2 - y2   

Vậy x2 - y2 = (x+y) (x-y)     

còn câu b mình hông bik=)))))                                                                                         

Nguyễn Thị Thùy Dương
21 tháng 5 2017 lúc 21:21

\(^{x^2-y^2=x^2+xy-y^2-xy=x\left(x+y\right)-y\left(x+y\right)=\left(x+y\right)\left(x-y\right)..}\)

Ma Kết Đẹp Trai
21 tháng 5 2017 lúc 21:24

Trả lời rõ ra coi

Lưu Phương Thảo
Xem chi tiết
Hung nguyen
18 tháng 4 2017 lúc 9:32

b/ Ta có: \(\left(a+b-c\right)\left(b-c\right)\le0\)

\(\Leftrightarrow c^2+b^2-ac+ab\le2bc\)

Ta lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\le a^2+4bc+3ac+ab\)

Giờ ta cần chứng minh:

\(a^2+4bc+3ac+ab\le9bc\)

\(\Leftrightarrow a^2+3ac+ab\le5bc\)

Cái này là đúng vì a, b, c là 3 cạnh của tam giác và \(a\le b\le c\)

Nguyễn Tiến
Xem chi tiết
Nguyễn Minh Đăng
4 tháng 8 2020 lúc 8:30

2) Ta có: Áp dụng bất đẳng thức:

\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)

Tương tự chứng minh được:

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế 3 bất đẳng thức trên với nhau ta được:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c\)

Khách vãng lai đã xóa
Hoàng Phúc
Xem chi tiết
zZz Phan Cả Phát zZz
20 tháng 11 2016 lúc 22:04

Áp dụng định lý Pi-ta-go đó 

Bùi Thị Vân
21 tháng 11 2016 lúc 9:44

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ 
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
            \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
            \(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
             \(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
        \(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu  - nhi - a  ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
                                                                                   \(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
                     \(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
                     \(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
                     \(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
                            \(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
                             \(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

Nguyễn Thị Thùy Dương
21 tháng 11 2016 lúc 9:52

Binh phuong 3 ve.

=> BDT  trai dc chung minh( de roi)

CM not  BDT phai ( SD  gi nhi?)

Nguyễn Đức Cảnh
Xem chi tiết
mình là ai
30 tháng 3 2017 lúc 21:41

Hỏi gì vậy bạn

NGUUYỄN NGỌC MINH
Xem chi tiết