Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Siêu Nhân Lê
Xem chi tiết
Nguyễn Thị Anh
16 tháng 10 2016 lúc 16:31

sử dụng đồng dư thức hoặc hằng đẳng thức

Hoàng Tử Lớp Học
Xem chi tiết
Nguyễn Minh Phương
19 tháng 10 2016 lúc 22:54

ngu người bài này mà không biết giải

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

Khách vãng lai đã xóa
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Quang Đức
19 tháng 12 2016 lúc 21:58

Ta có: 20162016 + 20162017 = 20162016.(1+2016) = 20162016 . 2017 chia hết chi 2017

Trần Hoàng Ngân
19 tháng 12 2016 lúc 22:51

Giả sử 20162016 + 20162017 không chia hết cho 2017 
Ta có : 20162  = 4064256 = 2015 x 2017 + 1 
=> 2016=  1 ( mod 2017 ) 
=> (20162)^1008 = 11008 ( mod 2017 ) 
=> 20162016 = 1 ( mod 2017 ) 
Ta lại có : 20162016 x 2016 = 1 x 2016  ( mod 2017 )
=> 20162017 = 2016 ( mod 2017 ) 
Nên 20162016 + 20162017 = 0 ( mod 2017 ) 
Vậy điều đã giả sử là sai 
=> 20162016 x 20162017 chia hết cho 2017 . 
mình nha . Yêu , chúc bạn học thật tốt 
 

Siêu Nhân Lê
Xem chi tiết
Bùi Thị Vân
17 tháng 10 2016 lúc 8:33

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

Tuấn
16 tháng 10 2016 lúc 22:25

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

Nguyễn Ngọc Hải Dương
17 tháng 10 2016 lúc 11:19

mik mới học lớp 7

Tôi Là Ai
Xem chi tiết
Hyomin
18 tháng 10 2016 lúc 17:34

tớ có lớp 7 thui

titanic
Xem chi tiết
vo van truong son
19 tháng 8 2017 lúc 15:43

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn

Nguyễn Minh Phương
19 tháng 8 2017 lúc 15:54

bn võ văn trường sơn đăng j kì vậy.đay là toán mà

Nguyễn Quốc Gia Huy
19 tháng 8 2017 lúc 16:02

Không chia hết nhé.

Nguyễn Đức Minh
Xem chi tiết
Nguyen Kieu Trang
Xem chi tiết
Nguyễn Đăng Khoa
14 tháng 11 2016 lúc 19:35

số trên sẽ có tổng các chữ số bằng 1

=>số 102017+2016 ko chia hết cho 3

ta duc manh
14 tháng 11 2016 lúc 19:38

10^2017 có tổng các chữ số bằng 1

2016 có tổng các chữ số bằng 9

Mà 1+9=10 không chia hết cho 3 nên 10^2017+ không chia hết cho 3

phạm khanh linh
2 tháng 2 2018 lúc 19:27

ko chia hetcho 3

Bùi Mai Trang
Xem chi tiết
o0o I am a studious pers...
23 tháng 7 2016 lúc 21:20

\(19^{120}-1\)

\(=\left(18+1\right)^{120}-1\)

\(=\left(\left(18+1\right)^{60}\right)^2-1\)

\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)

\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)

Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18