CMR: Nếu a+b<2 thì 1 trong 2 số a,b phải nhỏ hơn 1
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
CMR nếu a/b=b/c=c/a thì a=b=c
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
=> \(\dfrac{a}{b}=1\Rightarrow a=b\)
=> \(\dfrac{b}{c}=1\Rightarrow b=c\)
=>\(\dfrac{c}{a}=1\Rightarrow c=a\)
Vậy a=b=c
Dùng tỉ lệ thức em ha
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Suy ra\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=1\) Từ đó suy ra a=b=c
biết CBY > ACB
a, cmr : nếu Ax // By thì CBY + CAX - ACB = 180 độ
b, cmr : nếu CBY + CAX - ACB = 180 độ thì Ax // By
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
cmr: Nếu a = b => a/b = a+m/b+m
Vì a = b => \(\hept{\begin{cases}\frac{a}{b}=1\\a+m=b+m\Rightarrow\frac{a+m}{b+m}=1\end{cases}}\)
=> \(\frac{a}{b}=\frac{a+m}{b+m}=1\left(đpcm\right)\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
CMR: Nếu a/b= b/c=c/a thì a=b=c
Cmr: nếu a/b=b/c=c/a thì a=b=c
Theo t/c dãy tỉ số = nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a/b = b/c = c/a = 1
=> a=b; b=c; c=a
=> a=b=c (Đpcm).
CMR nếu a^2+b^2+4=ab - 2(a+b) thì a=b
\(a^2+b^2+4=ab-2\left(a+b\right)\)
\(\Leftrightarrow2a^2+2b^2+8=2ab-4a-4b\)
\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(a^2-ab+b^2\right)=0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a-b\right)^2=0\)
Do \(\left(a+2\right)^2,\left(b+2\right)^2,\left(a-b\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\a-b=0\end{matrix}\right.\)\(\Rightarrow a=b=-2\left(đpcm\right)\)
CMR: a) Nếu a/b >1 thì a/b > a+c/b+c
b) Nếu a/b <1 thì a/b < a+c/b+c
CMR: Nếu A con B thì A giao B=A
Giả sử:
\(A=\left\{1;2\right\}\)
\(B=\left\{1;2;3\right\}\)
\(\Rightarrow\text{ A là tập hợp con của B}\)
\(\text{Lại có: }A\subset B=\left\{1,2\right\}=A\)
Vậy ta suy ra ĐPCM