tìm biểu thức\(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)
Tìm x sao cho biểu thức\(\frac{2x-9}{2x-5}+\frac{3x}{3x+2}\) có giá trị bằng 2
\(\Leftrightarrow\frac{2x-9}{2x-5}-1+\frac{3x}{3x+2}-1=0\)
\(\Leftrightarrow\frac{-4}{2x-5}+\frac{-2}{3x+2}=0\)
\(\Leftrightarrow\frac{2}{2x-5}+\frac{1}{3x+2}=0\)
\(\Leftrightarrow\frac{8x-1}{\left(2x-5\right)\left(3x+2\right)}=0\Rightarrow x=\frac{1}{8}\)
ta có :
\(\frac{2x-9}{2x-5}+\frac{3x}{3x+2}=2\\ \Rightarrow\frac{\left(2x-5\right)-4}{2x-5}+\frac{\left(3x+2\right)-2}{3x+2}=2\\ \Rightarrow1-\frac{4}{2x-5}+1-\frac{2}{3x+2}=2\\ \Rightarrow\frac{-4}{2x-5}-\frac{2}{3x+2}=0\\ \Rightarrow\frac{-4}{2x-5}=\frac{2}{3x+2}\\ \Rightarrow-4.\left(3x+2\right)=2.\left(2x-5\right)\\ \Rightarrow-12x-8=4x-10\\ \Rightarrow16x=2\\ \Rightarrow x=\frac{1}{8}\)
vậy ...
chúc bạn học tốt !!!
Cho biểu thức:
A=\(\left(\frac{3}{x+5}-\frac{3x-15}{2x-15}.\left(\frac{2x-15}{x^2-25}-2x+15\right)\right):\left(1-x\right)\)
Tìm x để biểu thức A xác định
diều kiện xác định là các mẫu phải khác o; số chia cũng khác o nhé:
ĐK: +) \(x+5\ne0\Rightarrow x\ne-5\)
+) \(2x-15\ne0\Rightarrow x\ne\frac{15}{2}\)
+) \(x^2-25\ne0\Rightarrow\left(x+5\right)\left(x-5\right)\ne0\Rightarrow x\ne\pm5\)
+) \(1-x\ne0\Rightarrow x\ne1\)
Vậy điều kiện xác đinh của A là : \(x\ne1;x\ne\frac{15}{2};x\ne\pm5\)
M=\(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
a, Tìm ĐKXĐ của M
b, Rút gọn M
Tính gtri của M vs x =\(\frac{1}{3}\)
CM biểu thức M k phụ thuộc vào x : P=\(\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\)
Giup mik vs . Mik đg cần gấp. Thanks
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\)
\(=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\left(\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x+5\right)\left(x-5\right)}\right).\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{\left(x+x-5\right)\left(x-x+5\right)}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{5\left(2x-5\right)}{\left(x-5\right)}.\frac{1}{2x-5}+\frac{x}{5-x}\)
\(=\frac{5}{x-5}-\frac{x}{x-5}\)
\(=\frac{5-x}{x-5}\)
\(=\frac{-\left(x-5\right)}{x-5}\)
\(=-1\)
=> biểu thức P k phụ thuộc vào x
Rút gọn biểu thức sau
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}-\frac{-2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}-\frac{-2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}+\frac{2}{9}-\frac{7}{5}\right)-\frac{5x}{2}.\frac{x-4}{5}\)
\(M=\frac{-2x}{3}+3x\left(\frac{15x+20-126}{90}\right)-\frac{5x^2-20x}{10}\)
\(M=\frac{-2x}{3}+3x.\frac{15x-106}{90}-\frac{5.\left(x^2-4x\right)}{10}\)
\(M=\frac{-2x}{3}+\frac{45x^2-318x}{90}-\frac{x^2-4x}{2}\)
a) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
b) tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x--1)2
c) tìm x sao cho giá trị của biểu thức\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\)không lớn hơn giá trị của biểu thức \(\frac{x^2}{7}-\frac{2x-3}{5}\)
d) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không lớn hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
cho biểu thức M = \(\frac{x^3+2x^2-x-2}{x^3-2x^2-3x}\orbr{\frac{\left(x+2\right)^2-x^2}{4x^2-4}-\frac{3}{x^2-x}}\)
tìm x để biểu thức xác định , khi đó hãy rút gọn biểu thức M
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Bài 2; Tìm gtnn của các biểu thức :
A=5+/2x-3,4\
B=2/3x-6\+27,8
C=16,5 +3/2x-\(\frac{1}{2}\)\
D= /3x-2\
A = 5+ |2x-3,4|
vì GTTĐ của một biểu thức >= 0 nên A >= 5 ( khi x = 1,7)
B >= 27,8 (khi x = 2)
C >= 16,5 ( khi x = 1/4)
D >= 0 (khi x = 2/3)
lưu ý GTTĐ viết là | | nhé !