Giải phương trình nghiệm nguyên
\(x^4+y^4+z^4+2012\)
Giải phương trình nghiệm nguyên
\(x^4+y^4+z^4+2012\)
giải phương trình nghiệm nguyên 4^x+5^y=6^z với x;y;z thuộc N
Theo đề: \(5^y=6^z-4^x\)
Vì \(y\inℕ\)nên vế trái chắc chắn là số lẻ do đó vế phải cũng lẻ
Mà \(6^z,4^x\)đều là lũy thừa cơ số chẵn do vậy 1 trong 2 \(x,z\)phải bằng \(0\)
Mà \(6^z-4^x=5^y>0\Rightarrow6^z>4^x\)nên \(z\)không thể bằng \(0\)
Do đó \(x=0\)
\(\Rightarrow6^z-5^y=1\)vì các lũy thừa bậc cao của 5 và 6 không thể là các số tự nhiên liên tiếp nên \(y=z=1\)
Vậy nghiệm của phương trình là \(x=0,y=z=1\)
Giải phương trình nghiệm nguyên dương 1 + 4x + 4y = z2
VD1: Giải phương trình nghiệm nguyên:
\(1+x+x^2+x^3=y^3\)
VD2: Giải phương trình nghiệm nguyên:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
VD1:
Với x=-1 thì y=0.
Với x>0 thì \(x^3< 1+x+x^2+x^3< x^3+3x^2+3x+1.\)
\(\Leftrightarrow x^3< y^3< \left(x+1\right)^3.\), Điều này vô lí .
Với x<-1 thì \(x^3+3x^2+3x+1< 1+x+x^2+x^3< x^3\),
\(\Leftrightarrow\left(x+1\right)^3< y^3< x^3\),Điều này vô lí.
Vậy phương trình đã cho có 2 nghiệm nguyên \(\left(x,y\right)\)là \(\left(0;1\right),\left(-1;0\right).\)
VD2:
Chuyển vế ta có:
\(y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1.\)
Nếu \(x\ne0\)hoặc \(z\ne0\)thì
\(x^4+1^4+z^4+2x^2z^2+2z^2+2x^2< x^4+z^4+2x^2z^2+3x^2+4z^2+1< x^4+y^4+2^4+2x^2y^2+\)
\(4x^2+4z^2\)
\(\Leftrightarrow\left(x^2+z^2+1\right)^2< y^4< \left(x^2+y^2+2\right)^2\). Điều này vô lí với y nguyên
Với \(x=z=0\Rightarrow y^4=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Do đó phương trình đã cho có các nghiệm nguyên (x, y, z) là ( 0;1;0) ,( 0;-1;0)
Giải phương trình nghiệm nguyên: 30x+4y=2011z
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
giải phương trình nghiệm nguyên sau
\(15x^2-7y^2=9\)
\(x^4+y^4+z^4+t^4=165\)
giúp mình với, mình cảm ơn (mình cần trước thứ 6)
Giải phương trình nghiệm nguyên :
\(X^4-Y^4+Z^4+2X^2Z^2+3X^2+4Z^2+1=0\)
Giải phương trình nghiệm nguyên :
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
Dễ thấy đc nghiệm (0;1;0) và (0;-1;0) rồi nhưng kb còn nghiệm khác hay k