Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tiến Minh
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Nguyễn thành Đạt
13 tháng 9 2023 lúc 23:01

Ta có : \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)

Xét : \(\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{3}{4}.\left(x-y\right)^2+\dfrac{5}{4}.\left(x+y\right)^2}\)

\(\ge\sqrt{\dfrac{5}{4}.\left(x+y\right)^2}=\dfrac{\sqrt{5}}{2}.\left(x+y\right)\)

\(CMTT:\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}.\left(y+z\right)\)

                \(\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}.\left(x+z\right)\)

Do đó : \(P\ge\dfrac{\sqrt{5}}{2}.\left(x+y+y+z+z+x\right)=\dfrac{2\sqrt{5}.\left(x+y+z\right)}{2}\)

\(\Rightarrow P\ge\sqrt{5}.\left(x+y+z\right)\)

Ta có : BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

Mà : \(xy+yz+zx=3\)

\(\Rightarrow\left(x+y+z\right)^2\ge9\)

\(\Leftrightarrow x+y+z\ge3\)

\(\Rightarrow P_{min}=3\sqrt{5}\)

Dấu bằng xảy ra : \(\Leftrightarrow x=y=z=1\)

MInemy Nguyễn
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
đức trung okay
26 tháng 8 2017 lúc 6:24

KON 'NICHIWA ON" NANOKO: chào cô

Bảo Thiii
Xem chi tiết
meme
16 tháng 9 2023 lúc 15:21

a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.

Uchiha Itachi
Xem chi tiết
Bùi Tuấn Đạt
14 tháng 5 2021 lúc 15:55

Ta có x2-xy+y2=\(\left(\dfrac{x+y}{2}\right)^2+3\left(\dfrac{x-y}{2}\right)^2\)\(\ge\)\(\left(\dfrac{x+y}{2}\right)^2\)

=>\(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}\ge\dfrac{x+y}{2\left(x+y+2z\right)}\)(1) . Tương tự ...

Đặt \(\left\{{}\begin{matrix}y+z=a\\x+z=b\\x+y=c\end{matrix}\right.\)(a,b,c>0). Khi đó ta có :

S=\(\dfrac{1}{2}\left(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\right)\ge\dfrac{3}{4}\)  (Netbit)

Minhchau Trần
Xem chi tiết
THN
Xem chi tiết
๖Fly༉Donutღღ
8 tháng 9 2017 lúc 19:48

Hên xui thôi ( cái này không có chắc lắm )

\(\frac{x^3-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)

\(=xy-xy+xy-yz+zx-x^3\)\(z\)\(-\)\(zx^2\)

\(=xy-yz-zx-x^3\)\(z\)

๖Fly༉Donutღღ
8 tháng 9 2017 lúc 19:50

phần trên sai rồi cho xin lỗi  ( trình bày lại )

bạn ghi lại đề nha

= xy - xy + yz - yz + zx - x^3z - zx^2

= -zx - x^3z

Lê Song Phương
Xem chi tiết
Xyz OLM
17 tháng 2 2022 lúc 18:11

Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)

\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)

Lại có  \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)

=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky) 

Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)

Đặt x + y = a ; y + z = b ; x + z = c

Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)

=> \(P\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x = y = z 

Khách vãng lai đã xóa
Nguyễn Tuấn Dương
16 tháng 2 2022 lúc 20:43

bài 8 : bỏ dấu hoặc  rồi tính 

a;( 17 - 299) + ( 17 - 25 + 299)

Khách vãng lai đã xóa
Hoàng Minh Ngọc
16 tháng 2 2022 lúc 20:44

bằng 20 ấn mtinh ra thế

Khách vãng lai đã xóa