Cho 1/x+1/y+1/z chứng minh x=y=z
Cho x,y,z>0 và x+y+z=1. Chứng minh \(\dfrac{1+x}{1-x}+\dfrac{1+y}{1-y}+\dfrac{1+z}{1-z}\le\dfrac{2x}{y}+\dfrac{2y}{z}+\dfrac{2z}{x}\)
cho x, y, z khác 0 và x+y+z khác 0 và 1/x+1/y+1/z=1/x+y+z .
chứng minh 1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0
\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0
\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0
\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0
Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)
và x2015 + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
Trường hợp 2: y + z = 0 làm tương tự
Trường hợp 3: x + z = 0 làm tương tự
Vậy bài toán được chứng minh.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy nha
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
Cho x,y,z>1 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
Chứng minh \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Xét \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
\(\Leftrightarrow1=\left(1-\dfrac{1}{x}\right)+\left(1-\dfrac{1}{y}\right)+\left(1-\dfrac{1}{z}\right)\)
\(\Leftrightarrow1=\dfrac{x-1}{x}+\dfrac{y-1}{y}+\dfrac{z-1}{z}\)
Áp dụng bđt Bunhiacopxki có:
\(x+y+z=\left(x+y+z\right)\left(\dfrac{x-1}{x}+\dfrac{y-1}{y}+\dfrac{z-1}{1}\right)\ge\left(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\right)^2\)\(\Leftrightarrow\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Dấu "=" xảy ra khi x=y=z=1,5Tự đăng câu hỏi xong tự trả lời (T-T)
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng 1/x+y + 1/y+z + 1/z+x < 1/4x + 1/4y + 1/4z + 9/4
a, Cho 0 <= x,y,z <= 1. Chứng minh
0 <= x+y+z-xy-yz-xz <=1
b, Cho -1 <= x,y,z <=2 và x+y+z=0 . Chứng minh
x^2 + y^2 + z^2 <= 6
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
Cho biết : \(x+y+z=1\)( x, y, z là số dương)
Chứng minh:
\(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\text{≤}\dfrac{3}{4}\)
Sửa đề: \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\ge\dfrac{3}{4}\)
Đặt \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(P=\dfrac{x+1}{x+1}-\dfrac{1}{x+1}+\dfrac{y+1}{y+1}-\dfrac{1}{y+1}+\dfrac{z+1}{z+1}-\dfrac{1}{z+1}\)
\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{4}\) ( vì \(x+y+z=1\) )
\(\Rightarrow P\ge3-\dfrac{9}{4}=\dfrac{3}{4}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x+1=y+1=z+1\)
\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(Max_P=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{3}\)
Cho x, y,z thoã mãn x+y+z+1=4xyz. Chứng minh 1/x+1/y+1/z >=3.
oh. đễ mà
nhưng em học lop 8
để khi nào em lên lớp 9 em giải cho :D
cho x, y, z khác 1 và xyz=1. chứng minh rằng x²/(x-1)² + y²/(y-1)² + z²/(z-1)² >=1
Tournament of the Towns, 1993 :3
Cho x là no pt, by C-S:
\(a^2+b^2\ge\frac{\left(x^4+2x^2+1\right)^2}{x^2+x^6}\ge8\)
\(\Leftrightarrow\left(x^2-1\right)^4\ge0\)
từ đây suy ra nghiệm :3
à sorry mk gửi nhầm câu hỏi ==" :v
Câu hỏi của Phạm Hồ Thanh Quang - Toán lớp 8 - Học toán với OnlineMath
cho x, y,z >0 và 1/x +1/y +1/z =4 chứng minh rằng 1/2x+y+z +1/x+2y+z +1/x+y +2z =< 1
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
\(x+x+y+z\ge4\sqrt[4]{x.x.y.z}\)
=> 2x + y + z \(\ge4\sqrt[4]{x.x.y.z}\) (1)
Với 4 số dương \(\frac{1}{x};\frac{1}{x};\frac{1}{y};\frac{1}{z}\) ta có: \(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}\) (2)
Từ (1)(2) => \(\left(2x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4.\sqrt[4]{x.x.y.z}4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=16\)
=> \(\frac{1}{2x+y+z}\le\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (*)
Tương tự, ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (**)
\(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (***)
Từ (*)(**)(***) => Vế trái \(\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{4}.4=1\)
=> đpcm
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm
cho x,y,z >0;xyz=1.Chứng minh rằng x3/(y+1)(z+1)+y3/(z+1)(x+1)+x3/(y+1)(z+1)≥3/4