bài 122:Cho p và p+8 đều là số nguyên tố, chứng minh rằng 4p+1 là só nguyên tố hay hợp số
bài 122:Cho p và p+8 đều là số nguyên tố, chứng minh rằng 4p+1 là só nguyên tố hay hợp số
Bài 1: Cho p và p +4 là số nguyên tố >3. Chứng minh rằng p +8 là hợp số .
Bài 2: Cho p là số nguyên tố > 3 . Hỏi p2 + 2003 là số nguyên tố hay hợp số ?
Bài 3 : Cho 8p + 1 và p đều là số nguyên tố > 3 . Chứng minh rằng 4p + 1 là hợp số ( làm theo 2 cách )
B2
Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2
Mà p^2+2003 > 2 => p^2+2003 là hợp số
k mk nha
bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ
=> số lẻ nhân số lẻ bằng một số lẻ
vì 2003 là số lẻ nên số lẻ cộng số lẻ bang số chẵn lớn hơn 2 (vì p^2 là một số nguyên dương)
=> p^2 +2003 là hợp số
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
help me!!!!!!!!!!!!
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
Mình làm phần b hộ cho
vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)
Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)
=> p=3k+1
Vậy p+8=3k+1+8=3k+9 (là hợp số)
k mình nha, ai k trả lời bên dưới mình sẽ k lại.
2 ) Ta có :
8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3
mà p là số nguyên tố , 8 không chia hết cho 3 => 8p không chia hết cho 3 '
8p + 1 là số nguyên tố => không chia hết cho 3
=> 8p + 2 chia hết cho 3 ; 8p + 2 = 2 . ( 4p + 1 ) => 4p + 1 chia hết cho 3 hay 4p + 1 là hợp số
1.ta có p >3=>p lẻ và p được viết dưới dạng 3k+1 và 3k+2
xét p chỉ có thể là 3k +2
vậy p+100=3k+2+102=3k+104 là hợp số
mk k biết có đúng hay k đó nha
1.Cho n > 2 và ko chia hết cho 3.CM rằng n2 -1 và n2 + 1 ko thể đồng thời là 2 số nguyên tố
2.Cho p là số nguyên tố > 3
a,Chứng minh p có dạng 6k + 1 hoặc 6k +5
b,Biết 8p + 1 cũng là 1 số nguyên tố , Cm 4p + 1 là hợp số
3.Cho p và p +8 đều là số nguyên tố (p > 3).Hỏi p +100 là hợp số hay số nguyên tố
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
Cho p là số nguyên tố >5 ; 2p+1 cũng là số nguyên tố. Chứng minh rằng 4p+1 và 4p-1 là hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2
+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+ Vậy p có dạng 3k+2
Khi đó chia hết cho 3
Vậy 4p+1 là hợp số
tick nha
1. Cho p và 2p + 1 là các số nguyên tố (p>3). Chứng minh rằng 4p + 1 là hợp số.
2. Cho p và 10p + 1 là các số nguyên tố (p>3). Chứng minh rằng 5p + 1 là hợp số.
3. Cho p và 8p2 - 1 là các số nguyên tố (p>3. Chứng minh rằng 8p2 + 1 là hợp số.
4. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. tổng của 25 số nguyên tố đó là số chẵn hay số lẻ. Vì sao?
5. Tổng của 3 số nguyên tố bằng 1012. Tìm số nguyên tố nhỏ nhất.