Tìm GTLN của:
a) \(\frac{2018}{|x|+2019}\)
b) \(\frac{|x|+2018}{-2019}\)
Tìm GTLN của A =\(\frac{2019}{\left|x\right|+2018}\)
Em tham khảo: Câu hỏi của Xuân Thường Đặng - Toán lớp 7 - Học toán với OnlineMath
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
Cho a,b,c,d khác 0, thỏa mãn :
\(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}\) =\(\frac{x^{2018}}{a^2}\)+\(\frac{y^{2018}}{b^2}\)
Tính A=x2019+y2019+z2019+t2019
Cho các số \(a,b,c,d\ne0\). Tính
\(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Biết \(x,y,z,t\)thoả mãn: \(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}=\frac{x^{2018}}{a^2}+\frac{y^{2018}}{b^2}+\frac{z^{2018}}{c^2}+\frac{t^{2018}}{d^2}\)
Cho biểu thức \(C=\frac{2018}{x^2+2x+2019}\) . Tìm GTLN của C
\(C=\frac{2018}{x^2+2x+2019}=\frac{2018}{\left(x+1\right)^2+2018}\)
Ta có \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+2018\ge2018\)
\(\Rightarrow C\le1\)
Dấu "=" khi x = -1
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(C=\frac{2018}{\left(x^2+2x+1\right)+2018}=\frac{2018}{\left(x+1\right)^2+2018}\)
ta có \(\left(x+1\right)^2\ge0;\forall x\Rightarrow\left(x+1\right)^2+2018\ge2018\)
\(\Rightarrow C=\frac{2018}{\left(x+1\right)^2+2018}\le1\)
GTLN C= 1 khi và chỉ khi x=-1
Giải phương trình:\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}=\frac{19}{49}\)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
Cho A=\(\frac{2018^{2018}}{2019^{2019}}\) Và B=\(\frac{2018^{2018}+2018}{2019^{2019}+2019}\) So sánh A và B
Tìm GTLN-GTNN
a)H=-2-y^2
b)\(\frac{2018}{\left|x\right|+2019}\)
c)F=\(\frac{3}{\left|x\right|-1}\)
a, Ta có : y^2 lớn hơn hoặc bằng 0 với mọi y
=> -y^2 nhỏ hơn hoặc bằng 0 với mọi y
=>-2-y^2 nhỏ hơn hoặc bằng -2 với mọi y
=> H nhỏ hơn hoặc -2 với mọi y
Dấu "=" xảy ra <=>y^2=0 <=>y=0
Vậy GTLN của H là -2 tại y=0
tìm x , biết :
\(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1