3x=2y,7x=5z và x-y + z= 32
3x=2y;7x=5z,x-y+z=32
Ta có:
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}.\) (1)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}.\) (2)
Từ (1) và (2) => \(\frac{x}{2}=\frac{y}{3};\frac{x}{5}=\frac{z}{7}\)
Có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)
\(\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}.\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{32}{9}.10=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{32}{9}.15=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{32}{9}.14=\frac{448}{9}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(\frac{320}{9};\frac{160}{3};\frac{448}{9}\right).\)
Chúc bạn học tốt!
Tìm 3 số x,y,z biết:
3x=2y ; 7x=5z và x-y+z =32
3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra x/10=2 => x=20
y/15=2 =>y=30
z/21=2 => z=42
cách trả lời của công chúa giá bằng s
ai đề
Tìm x, y, z biết
3x = 2y ; 7x = 5z và x - y + z = 32
3x=2y=>3.5x=2.5y=>15x=10y=>x/10=y/15
7x=5z=>7.2x=5.2z=>14x=10z=>x/10=z/14
kết hợp 2 điều trên => x/10=y/15=z/14
áp dụng dãy tỉ số = nhau=>(x-y+z) / (10-15+14)=32/9
=>x=32/9 .10=320/9
y=32/9 . 15=160/3
z=32/9 .14=448/9
Ta có : \(\hept{\begin{cases}3x=2y\\7x=5z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{5}=\frac{z}{7}\end{cases}}\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{15};\frac{x}{10}=\frac{z}{21}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Vậy : \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)
\(\frac{x}{5}\)=\(\frac{z}{7}\)\(\Rightarrow\)\(\frac{x}{10}\)=\(\frac{z}{14}\)ma ban oi
giải giùm mik bài này với: 3x = 2y ; 7y = 5z và x - y + z = 32
TA CÓ:
3x= 2y => x/2=y/3=> x/10= y/15
7y=5z=> y/5=z/7=> y/15=z/21
Từ 2 điều trên => x/10=y/15=z/21
Sau đó áp dụng t/c của dãy tỉ số = nhau là đk
+) \(3x=2y\)\(=>\frac{x}{2}=\frac{y}{3}\)(1)
+) \(7y=5z=>\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) suy ra: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Mà: x - y + z = 32
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2.\)
Nếu: +) \(\frac{x}{10}=2\Rightarrow x=10.2=20\)
+) \(\frac{y}{15}=2\Rightarrow y=15.2=30\)
+) \(\frac{z}{21}=2\Rightarrow z=21.2=42\)
Vậy, x = 20; y = 30; z = 42.
TA CÓ:
3x= 2y => x/2=y/3=> x/10= y/15
7y=5z=> y/5=z/7=> y/15=z/21
Từ 2 điều trên => x/10=y/15=z/21
Sau đó áp dụng t/c của dãy tỉ số = nhau là đk
Tìm x, y, z biết:
a) 3x = 2y; 7x = 5z và x-y+z=32
b)\(\frac{2x}{3}\)= \(\frac{3y}{4}=\frac{4z}{5}\) và x+y+z= 49
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+ 3y- z= 50
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
\(a,3x=2y=>\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)(1)
\(7x=5z=>\frac{x}{5}=\frac{z}{7}=>\frac{x}{10}=\frac{z}{14}\)(2)
Từ 1 và 2 \(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)
Áp dụng tc của dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(=>\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}=>9x=320=>x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}=>9y=480=>y=\frac{480}{9}\\\frac{z}{14}=\frac{32}{9}=>9z=448=>z=\frac{448}{9}\end{cases}}\)
Vậy ,,,
bài toán này làm như thế nào?
3x+2y,7y+5z và x-y+z= 32
1. Tìm các số hữu tỉ x,y,z biết:
a) 2x=3y=7z và x+y-z= 58
b) 2x=3y=5zvà x+y-z= -190
c) 3x=2y,7y=5zvà x-y=z= 32
d) x−12 =y−23 =z−34 và x-2y=3z= -10
a) 2x = 3y =7z và x+y-z =58
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)
\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)
\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)
Các Bạn Giúp Mình Với Ạ
Tìm x,y,z biết x phần 3 = y phần 4 ; 4 phần 5 = z phần 7 và 2x + 3y-z = 186 x phần 2 = y phần 3 = z phần 5 và x+y+z = -90 2x = 3y = 5z và x-y+z = -33 3x = 2y ; 7x = 5z ; x+y+z = 32Bạn chú ý gõ đề bài bằng công thức toán!
1. Tìm các số hữu tỉ x,y,z biết:
a) \(2x=3y=7z\) và x+y-z= 58
b) \(2x=3y=5z\)và x+y-z= -190
c) \(3x=2y,7y=5z\)và x-y=z= 32
d) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y=3z= -10
e) \(x(x+y+z)=-12;y(y+z+x)=18;z(z+x+y)=30\)