\(Cho\)\(:\)\(a+b+c=0\)
\(CMR:a^3+b^3+c^3=3abc\)
cho a^3+b^3+c^3=3abc .cmr:a+b+c=0 hoặc a=b=c
cho a+b+c=0
cmr:a^3+b^3+c^3=3abc
Ta có :
Giả thuyết : a + b + c = 0
(a + b + c)3 = 0
a3 + b3 + c3 + 3.(a + b)(b + c)(c + a) = 0
Từ a + b + c = 0
=> \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
=> a3 + b3 + c3 + 3.(-c)(-a)(-b) = 0
=> a3 + b3 + c3 = 3abc
giai,cho,minh,bai,nay,di cho,a,b,c>=0.CMR:a^3+b^3+c^3>=3abc
a+b+c=0
a+b=-c
(a+b)^3=(-c)^3
a^3+3a^2b+3ab^2+b^3=(-c)^3
a^3+b^3+c^3=-3a^2b-3ab^2
a^3+b^3+c^3=-3ab(-c)
a^3+b^3+c^3=3abc
choA+B+C=0 CMR:a^3+b^3+c^3=3abc cmr:a^2+b^2+c^2=2(a^4+b^4+c^4)
Mn giúp mk vs:
Cho a+b+c=0
CMR:a3+b3+c3-3abc=0
Ta có : \(a+b+c=0\Rightarrow-a-b=c\)
\(\Rightarrow a^3+b^3+c^3-3abc=a^3+b^3+\left(-a-b\right)^3-3abc\)
\(=a^3+b^3-a^3-3a^2b-3ab^2-b^3-3abc\)
\(\Rightarrow-3a^2b-3ab^2-3abc=3ab\left(-a-b\right)-3abc\)
\(=3abc-3abc=0\) (đpccm)
a)Cho a,b,c thỏa mãn a+b+c=0.CMR:a3+b3+c3=3abc
b)Phân tích thành nhân tử:(x-y)3+(y-z)3+(z-x)3
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Đặt: \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}=G\)
\(\Rightarrow G=\frac{cay-cbx}{c^2}=\frac{bcx-baz}{b^2}=\frac{abz-acy}{a^2}\)
\(\Rightarrow G=\frac{cay-cbx+bcx-baz+abz-acy}{c^2+b^2+a^2}\)
\(\Rightarrow G=0\)
\(\Rightarrow\left(ay-bx\right)^2=\left(cx-az\right)^2=\left(bz-cy\right)^2=0\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(CMR:a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(a^3+b^3+c^3-3abc\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3a^2b+3ab^2+3abc\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)\(\left(đpcm\right)\)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`