Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Nguyễn Phương Thảo
Xem chi tiết
Rhider
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 22:34

Đề bài này sai

Rhider
Xem chi tiết
Rhider
Xem chi tiết
Đàm Minh Quang
Xem chi tiết
kagamine rin len
28 tháng 2 2017 lúc 19:38

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

Kiệt Nguyễn
Xem chi tiết
Nguyễn Khánh Huyền
3 tháng 8 2020 lúc 20:52

1+1+1+1+1+2=7

Khách vãng lai đã xóa
Tran Le Khanh Linh
3 tháng 8 2020 lúc 21:01

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)

phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng

bài toán cho f(x)+f(y)-f(z) >= A

tìm min, max của S-g(x)+g(y)+g(z)

*nháp

điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong

ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)

để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)

xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)

vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)

bài toán được chứng minh xong

Khách vãng lai đã xóa
Tran Le Khanh Linh
3 tháng 8 2020 lúc 21:08

cách khảo hàm mình không chắc chắn lắm nên mình làm theo 1 cách khác nữa!

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=S\)

đặt \(\overrightarrow{x}=\left(a;\frac{1}{a}\right);\overrightarrow{y}\left(b;\frac{1}{b}\right);\overrightarrow{z}\left(c;\frac{1}{c}\right)\)

ta có \(\left|\overrightarrow{x}\right|+\left|\overrightarrow{y}\right|+\left|\overrightarrow{z}\right|\ge\left|\overrightarrow{x}+\overrightarrow{y}+\overrightarrow{z}\right|\)nên

\(S\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

ta có \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=81\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-80\left(a+b+c\right)^2\)

\(\ge18\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-80\left(a+b+c\right)^2\ge82\)

=> S\(\ge\sqrt{82}\left(đpcm\right)\)

Khách vãng lai đã xóa
Vuvantuan
Xem chi tiết
zZz Cool Kid_new zZz
7 tháng 5 2020 lúc 18:07

Đề thi Olympic 30/4 Môn Toán 2018 lần thứ XXIV

Vài dòng đầu tớ chứng minh BĐT phụ bạn có thể làm trực tiếp luôn nhé ! Dùng phương pháp tiếp tuyến là OK thôi !

Ta dễ có các biến đổi sau:

\(\sqrt{a^2-a+1}\left(a^2+a+1\right)=\sqrt{\left(a^2-a+1\right)\left(a^2+a+1\right)\left(a^2+a+1\right)}\)

\(=\sqrt{\left(a^4+a^2+1\right)\left(a^2+a+1\right)}\)

\(=\sqrt{\left[\left(a^2+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\)

\(\ge\left(a^2+\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\frac{2a^3+a^2+a+2}{2}\)

\(\Rightarrow\sqrt{a^2-a+1}\ge\frac{2a^3+a^2+a+2}{2\left(a^2+a+1\right)}=a-\frac{1}{2}+\frac{3}{2}\left(\frac{1}{a^2+a+1}\right)\)

Chứng minh tương tự ta có được các bất đẳng thức sau:

\(\sqrt{b^2-b+1}=b-\frac{1}{2}+\frac{3}{2}\cdot\frac{1}{b^2+b+1};\sqrt{c^2-c+1}=c-\frac{1}{2}+\frac{3}{2}\cdot\frac{1}{c^2+c+1}\)

Như vậy ta cần chứng minh \(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\) với abc = 1

Đây là BĐT Vacs quen thuộc !!!! Bạn làm câu hỏi của mình có câu trả lời của tth_new có dùng Vacs và mình đã làm rồi nha !!!!!

Khách vãng lai đã xóa
Trần Lâm Thiên Hương
Xem chi tiết