phan tich thanh nhan tu
a x^8+x^6+x^4+x^2+1
b x^9-x^7-x^6-x^5+x^4+x^3+x^2+1
phan tich thanh nhan tu
1)x^4+6*x^3+7*x^2-6*x=1
2)x^3+4*x^2-29*x+24
PHAN TICH x^7+x^5+x^4+x^3+x^2+1 THANH CAC NHAN TU
\(x^7+x^5+x^4+x^3+x^2+1\)
\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)
\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)
phan tich da thuc thanh nhan tu
a) x^7+x^2+1
b) x^8+x+7
c) x^8+3x^4+1
d) x^10+x^5+1
\(x^7+x^2+1\)
\(=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
(x-1)(x-3)(x-5)(x-7)-30
(x+1)(x+2)(x+3)(x+4)-24
phan tich thanh nhan tu
a, k ph đc
b,Đặt \(A=...=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt x^2+5x+4=t,ta có:
\(A=t\left(t+2\right)-24=t^2+2t-24=t^2-4t+6t-24=t\left(t-4\right)+6\left(t-4\right)=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)
Phan tich da thuc thanh nhan tu x^2*[(x^2+1/x^2)+6*(x-1/x)+7]
phan tich da thuc sau thanh nhan tu: 3(x+5)(x+6)(x+7)-8x(2 cach)
phan tich cac da thuc sau thanh nhan tu
x^2-x-12
x^2+8x+15
x^3-x^2+x+3
x^8+3x^4+4
x^6-x^4-2x^3+2x^2
c)\(x^3-x^2+x+3=x^2+x-2x^2-2x+3x+3\)
\(=x\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+3\right)\)
d)\(x^8+3x^4+4=\left(x^8+4x^4+4\right)-x^4=\left(x^4+2\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)
e)\(x^6-x^4-2x^3+2x^2=x^4\left(x^2-1\right)-2x^2\left(x-1\right)=x^4\left(x-1\right)\left(x+1\right)-2x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^3+x^2\right)-2x^2\left(x-1\right)=x^2\left(x-1\right)\left(x^3+x^2-2\right)\)
\(=x^2\left(x-1\right)\left[\left(x^3-1\right)+\left(x^2-1\right)\right]=x^2\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(x+1\right)\right]\)
\(=x^2\left(x-1\right)\left(x-1\right)\left(x^2+2x+2\right)=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)
a)\(x^2-x-12\)
\(=x^2+4x-3x-12\)
\(=x\left(x+4\right)-3\left(x+4\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
b) \(x^2+8x+15\)
\(=x^2+3x+5x+15\)
\(=x\left(x+3\right)+5\left(x+3\right)\)
\(=\left(x+3\right)\left(x+5\right)\)
Phan tich da thuc sau thanh nhan tu : (x+1)(x+2)(x+3)(x+4)-8
Gợi ý:
Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:
\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)
Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.
(x + 1)(x + 2)(x + 3)(x + 4) - 8
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8
= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8
= (x2 + 5x + 4)(x2 + 5x + 6) - 8
Đặt x2 + 5x + 5 = t
⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)
Thay t = x2 + 5x + 5 vào (1), ta có:
(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9
= (t - 3)(t + 3)
⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)
= (x2 + 5x + 2)(x2 + 5x + 8)
Chúc bạn học tốt !!!!!!!!
(x+1)(x+2)(x+3)(x+4)-8
= [(x+1)(x+4)][(x+2)(x+3)]-8
= (x2+4x+x+4)(x2+3x+2x+6)-8
= (x2+5x+5-1)(x2+5x+5+1)-8
= (x2+5x+5)2-12-8
= (x2+5x+5)2-9
= (x2+5x+5) -32
= (x2+5x+5-3)(x2+5x+5+3) {HĐT số 3}
= (x2+5x+2)(x2+5x+8)
phan tich da thuc thanh nhan tu
a, x^2+x-6
b,x^4+4
a)\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=\left(x^2-2x\right)+\left(3x-6\right)\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
a) x2 + x - 6
= x2 - 2x + 3x - 6
= (x2 - 2x) + (3x - 6)
= x(x - 2) + 3(x - 2)
= (x + 3)(x - 2)
b) x4 + 4
= x4 + 4x2 + 4 - 4x2
= (x4 + 4x2 + 4) - 4x2
= (x + 2)2 - 4x2
= (x + 2 - 2x)(x + 2 +2x)