Chứng minh phương trình: 2x2 – 4y = 10 không có nghiệm nguyên.
Mik đang cần gấp nhanh mik tick cho
Chứng minh phương trình: 2x2 – 4y = 10 không có nghiệm nguyên.
●_● Chào Chào
2x2-4y=10
=>4-4y=10
=>4y=4-10
=>4y=6
\(2x^2-4y=10\)
\(< =>2\left(x^2-2y\right)=10< =>x^2-2y=5< =>x^2-5=2y\)
Dễ thấy 5 là số lẻ,2y là số chẵn
=>x2 phải là số lẻ do đó x lẻ thì luôn tìm đc y tương ứng
Lấy thử 1 VD bất kì : x=5;y=10 thì pt trên có nghiệm,chưa kể còn nhiều nữa
bn xem lại đề
\(2x^2-4y=10\)
\(\Leftrightarrow2\left(x^2-2y\right)=10\Leftrightarrow x^2-2y=5\Leftrightarrow x^2-5=2y\)
Dễ thấy 5 là số lẻ, 2y là số chẵn.
=> x2 phải là số lẻ do đó x lẻ thì luôn luôn tìm được y lẻ tương ứng.
....
=> Đề có vấn đề.
chứng minh phương trình : 2x^2-4y=10 không có nghiệm nguyên ?
ta có:
2x^2-4y=10
<=>2x^2-4y+2=12
<=>2(x^2-2y+1)=12
<=>(x-y)^2=6
<=>x-y=căn 6
vì căn 6 là số vô tỉ nên x-y là 1 số vô tỉ (1).
giả sử x,y là 2 nghiệm nguyên thì x-y nguyên trái với (1). Vậy pt ko có nghiệm nguyên.
Phương trình trên không phải không có nghiệm mà có rất nhiều nghiệm
Ta có 2x^2-4y=10 <=>2(x^2-2y)=10
<=>x^2-2y=5
Ta thấy 2y là số chẵn mà 5 là số lẻ =>x^2 là số lẻ từ đó ta cứ cho x là số lẻ sau đó suy ra giá trị của y
Ví dụ với x=3 =>x^2=9=>y=2
x=5=>x^2=25=>y=10
Cứ như thế ta sẽ tìm được tất cả các cặp số
Lê đắc Thường trả lời sai rồi x^2-2y+1 không bằng (x-y)^2 mà x^2-2xy+y^2 mới bằng (x-y)^2
Chứng minh rằng có thể có 33 số nguyên dương khác nhau không quá 50 mà trong đó không có số nào mà một số gấp đôi số còn lại
Làm nhanh giùm mik nha đang cần gấp, ai làm trước mik tick cho 3 cái nha
đây là lớp mấy vậy tui năm nay mới lên lớp 6 thui
mk củng z mới học lớp 6 thôi !! bạn yêu wys à !!!!!!!!!!
Chứng minh phương trình: 2x2 - 4y = 10 không có nghiệm nguyên
chứng minh phương trình:
2x2 - 4y = 10 không có nghiệm nguyên.
\(\left(\sqrt{2}x\right)-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2-12=0\)
<=> \(\left(\sqrt{2}x-\sqrt{2}\right)^2=12\)
<=> \(\sqrt{2}x-\sqrt{2}=12\)=> x ko có nghiệm nguyên
Hoặc \(\sqrt{2}x-\sqrt{2}=-12\) => x ko có nghiệm nguyên
( cho mình ^^)
chứng minh phương trình 2x2-4y=10 không là phương trình nghiệm nguyên ?
Đề sai. Với $x=3, y=5$ hoàn toàn thỏa mãn PT $2x^2-4y=10$.
Chứng minh rằng có thể có 33 số nguyên dương khác nhau không quá 50 mà trong đó không có số nào mà một số gấp đôi số còn lại
Làm nhanh giùm mik nha đang cần gấp, ai làm trước mik tick cho 3 cái nha
Cho 2k+1(k thuộc N) số nguyên lẻ là a0,a1,a2,.....,a2k. chứng minh rằng phương trình sau không có nghiệm hữu tỉ, a2k.x2k + a2k-1.x2k-1+.....+a1.x=0
Giúp mình nha, mình cần gấp ^-^ ai nhanh cho 3 tick
Gọi phương trình đã cho là f(x)
Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)
f(0) = a0 = - t.Q(x) (1)
Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)
Từ (1) ta có a0 là số lẻ nên t phải là số lẻ
Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + a0 là tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ
Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)
Vậy f(x) không có nghiệm nguyên
Cho hai phương trình: 2 x 2 − 5 x + 3 = 0 (1) và 3 − 2 3 x − 1 x + 2 = 2 x (2)
a) Chứng minh x = 3 2 là nghiệm chung của (1) và (2).
b) Chứng minh x = − 5 là nghiệm của (2) nhưng không là nghiệm của (1).
c) Hai phương trình đã cho có tương đương không? Vì sao?
a) Thay x = 3 2 vào (1) và (2) thấy thỏa mãn nên x = 3 2 là nghiệm chung của cả hai PT đã cho.
b) Thay x = -5 vào (2) thấy thỏa mãn nên x = -5 là nghiệm của (2). Thay x = -5 vào (1) thấy không thỏa mãn nên x = -5 không là nghiệm của (1).
c) Cách 1. Tìm được tập nghiệm của (1) và (2) lần lượt là S 1 = { 1 ; 3 2 } và S 2 = { - 5 ; 3 2 }
Vì S 1 ≠ S 2 Þ Hai phương trình không tương đương nhau.
Cách 2. Theo ý b, x = -5 là nghiệm của (2) nhưng không là nghiệm của (1) nên hai PT không có cùng tập nghiệm.