Tính nhanh : \(A=\frac{2013.2015-2014}{2.1975.1930+30.1975+3860}.\frac{1975.1945+1930}{2013.2013+2012}\)
tính nhanh
\(\frac{2015.2014-1}{2013.2015+2014}\)
\(\frac{2015.2014-1}{2013.2015+2014}\)
\(=\frac{2015.2013+2015-1}{2013.2015+2014}\)
\(=\frac{2015.2013+2014}{2013.2015+2014}\)
\(=1\)
Tham khảo nhé~
\(\frac{2015\cdot2014-1}{2013\cdot2015+2014}\)
\(=\frac{2015-1}{2014}\)
\(=\frac{2014}{2014}\)
\(=1\)
\(\text{Chúc bạn học tốt ! }\)
Tính nhanh
A = \(\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2015}\right):\left(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\right)\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+....\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}....\frac{4024}{2012}-2012}\)
tính nhanh cả nhà ơi
\(\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}-2012}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2013}{1}-1\right)+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4024}{2012}-1\right)}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
Ủng hộ mk nha ^_-
Tính nhanh
\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+\frac{2011}{4}+\frac{2010}{5}+...+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
Giải tự luận hộ mình nha!!!!!!!! Mình cảm ơn!!!
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
UwU
ư uwsuuuuuuuuuuuu kimochiiiiiiiiiiiiiiiiiiii
đùa thôi đáp án: 2015 nha bn
ư ư wsuuuuuuuuuuuuuuuuuuuuuuuuuu kimmmmmooooochiiiiiiiiiii
À quên nhớ FOLOW CHO TUI NHA!
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Tính giá trị của biểu thức sau bằng cách hợp lý:
B = \(\frac{\frac{2012}{2}+\frac{2012}{3}+\frac{2014}{4}+...+\frac{2012}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{1012}}\)
Làm ơn giúp mình nhanh nhất trước thứ 7 tuần sau nha! Lam dung va nhanh nhat minh se tick cho
Tính nhanh
\(\frac{2012+2013\times2014}{2014\times2015-2016}\)
Tử số = \(2012+\left(2015-2\right)x2014=2012+2014x2015-4028=2014x2015-\left(4028-2012\right)=2014x2015-2016\)
Tử số = mấu số nên kết quả =1
Tính :
\(\frac{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+......+\frac{1}{2014}+2014}{1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}}\)
Ta có: \(\frac{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...\frac{1}{2014}+2014}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=
= \(\frac{\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{1}{2014}+1\right)+1+2014}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=
= \(\frac{\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+2015}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=\(\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+1\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2015
cho mn hỏi câu tính nhanh này với nhé
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)x\left(1+1x2+1x2x3-9\right)\)
giúp mn nhé mn sắp phải nộp zùi
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)x0=0\)
#)Giải :
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(1+1\times2+1\times2\times3-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(1+2+6-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times0\)
\(=0\)
#~Will~be~Pens~#
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(1+1\times2+1\times2\times3-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(1+2+6-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(9-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times0\)
\(=0\)
~ Hok tốt ~