tìm x
a) \(\frac{x-8}{2x-17}\)
b) \(\frac{x-4}{x+1}\)
c) \(\frac{10}{x+7}\)
d)\(\frac{x-1}{x^2}\)
tìm x biết :
a) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
Phạm Tuấn Kiệt câu a sao nhìn không đc vậy ???
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
tìm xϵz để phân số sau tối giản :
a)\(\frac{x-8}{2x-17}\)
b) \(\frac{x-4}{x+1}\)
c) \(\frac{10}{x+7}\)
d) \(\frac{x-1}{x^2}\)
tìm x
a) \(\frac{x-1}{2}+\frac{x-2}{5}=\frac{1}{4}+\frac{x-7}{10}\)
b) \(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{1}{2x-3}-\frac{3}{2}\)
c)\(7\cdot\left(x-1\right)+2x\cdot\left(1-x\right)=0\)
d) \(\frac{x+1}{2008}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+10}{2009}+\frac{x+11}{2008}+\frac{x+12}{2007}\)
e) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}+\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}+\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Giải các phương trình sau :
a. 3x - 2 (5 + 2x) = 45 - 2x
b. \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
c.\(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
d. (x - 1) (5x + 3) = (3x - 8) (x - 1)
e. (x - 1) (x2 + 5x - 2) - (x3 - 1) = 0
f.\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
g. \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+1}{61}+\frac{x+7}{59}\)
h.\(\frac{x+5}{2015}+\frac{x+4}{2014}+\frac{x+4}{1002}+\frac{x+6}{1003}=6\)
k.\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50
Giải các phương trình sau :
a. 3x - 2 (5 + 2x) = 45 - 2x
b. \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
c.\(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
d. (x - 1) (5x + 3) = (3x - 8) (x - 1)
e. (x - 1) (x2 + 5x - 2) - (x3 - 1) = 0
f.\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
g. \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+1}{61}+\frac{x+7}{59}\)
h.\(\frac{x+5}{2015}+\frac{x+4}{2014}+\frac{x+4}{1002}+\frac{x+6}{1003}=6\)
k.\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)
Dạng 1: Phương trình bậc nhất
Bài 1: Giải các phương trình sau :
a) 0,5x (2x - 9) = 1,5x (x - 5)
b) 28 (x - 1) - 9 (x - 2) = 14x
c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x
d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2
e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)
f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)
g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)
h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)
i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)
j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)
Dạng 2: Phương trình tích
Bài 2: Giải phương trình sau :
a) (x + 1) (5x + 3) = (3x - 8) (x - 1)
b) (x - 1) (2x - 1) = x(1 - x)
c) (2x - 3) (4 - x) (x - 3) = 0
d) (x + 1)2 - 4x2 = 0
e) (2x + 5)2 = (x + 3)2
f) (2x - 7) (x + 3) = x2 - 9
g) (3x + 4) (x - 4) = (x - 4)2
h) x2 - 6x + 8 = 0
i) x2 + 3x + 2 = 0
j) 2x2 - 5x + 3 = 0
k) x (2x - 7) - 4x + 14 = 9
l) (x - 2)2 - x + 2 = 0
Dạng 3: Phương trình chứa ẩn ở mẫu
Bài 3: Giải phương trình sau :
\(\frac{90}{x}-\frac{36}{x-6}=2\) | \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\) |
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) | \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) |
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) | \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\) |
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) | \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\) |
a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):\left(-16\frac{2}{3}\right)=0\)
b) \(\left(\frac{x}{3}-5\frac{1}{4}\right)^2-\frac{-2}{5}=1\frac{1}{25}\)
c) \(\frac{17-x}{12}=\frac{3}{17-x}\)
d) \(1\frac{1}{3}-25\%\left(x-\frac{8}{3}\right)+2x=1,6:\frac{3}{5}\)