Cho tam giác ABC, H là trực tâm, O là giao điểm ba đường trung trực. M là trung điểm của BC. Chứng minh rằng OM = 1/2 AH
Cho tam giác ABC trực tâm H . O là giao điểm của ba đường trung trực ( O là đường tròn ngọai tiếp tam giác ABC ) M là trung điểm ( MB=MC) . Chứng minh rằng :
a/ AH//OM
b/ AH=2OM
c/ Chứng minh H,G,O thẳng hàng với G là trọng tâm tam giác ABC
Bài 3: Cho tam giác nhọn ABC. Gọi H,G,O lần lượt là trực tâm , trọng tâm giao điểm ba đường trung trực của tam giác do. tia AG cắt BC ở M. Gọi I là trung điểm cua GA, K là trung điểm của GH. Chứng minh
a) OM=1/2 AH
b) Tam giác IGK= Tam giác MGO
c) Ba điểm H,G,O thẳng hàng
d) GH = 2GO
a/
O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC
Nối AO cắt đường trong (O) tại E ta có
\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow BE\perp AB\)
H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)
=> BE//CH (1)
Ta có
\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow CE\perp AC\)
H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)
=> CE//BH (2)
Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME
Xét tg AHE có
MH=ME (cmt)
OA=OE
=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\)
b/
Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)
\(AH\perp BC\)
=> OM//AH
Xét tg AGH có
IA=IG (gt)
KH=KG (gt)
=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)
=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)
IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)
G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)
=> IG=GM (6)
Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)
c/
Nối H với O cắt AM tại G' Xét tg AHE
MH=ME (cmt) => AM là trung tuyến của tg AHE
OA=OE => HO là trung tuyến của tg AHE
=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)
Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)
\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng
d/
Do G là trọng tâm của tg AHE => GH=2GO
Cho tam giác ABC nhọn, H,G,O lần lượt là trực tâm, trọng tâm và giao của 3 đường trung trực của tam giác ABC, M là trung điểm của BC.
a, Chứng minh rằng OM=1/2 AH
b, E,F lần lượt là trung điểm của AG,HG
chứng minh: tam giác EFG = tam giác MOG
c, Chứng minh: H,G,O thẳng hàng
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD OM là đường trung bình của Δ BCD
OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
ΔABH=ΔBAD( g-c-g )
AH = BD mà OM=12DB OM=12AH
AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A PQ là đường trung bình của \large\Delta AG'H
PQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
ΔPQG′=ΔOMG′( g-c-g )
G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) G′M=12G′Amà G'M + G'A = AM
G′A=23AM mà AM là trung tuyến của ΔABC
G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G
mà G′∈OH G∈OH O, H, G thẳng hàng ( đpcm )
Hên xui nghe bạn ^ ^
Quyết Kiếm Sĩ:hên sui cái j copy trên mạng mà nổ wa :D
hình như Quyết kiếm sĩ sai rồi ấy
dòng 9 ấy
Cho tam giác nhọn ABC ( tam giác thường). Họi H,G,O theo thứ tự là trực tâm, trọng tâm, giao điểm ba đường trung trực của tam giác. Tia AG cắt BC ở M. Gọi I là trung điểm của GH. Chứng minh:
a) OM = 1/2 AH
b) tam giác IGK = tam giác MGO
c) Ba điểm H,O,G thẳng hàng
d) GH=2GO
Muốn gải thì phải tự kẻ hình, chứ người ta lười vẽ lắm
1) Cho tam giác ABC , AB < AC. AH là đường cao; M,N,P lần lượt là trung điểm của AB , BC , CA
a) C/m MP là đường trung trực của AH
b) So sánh chu vi tứ giác MPNH và chu vi tam giác ABC
2) Cho tam giác ABC , H là trực tâm , O là giao điểm 3 đường trung trực. M là trung điểm BC. C/m OM = 1/2 AH
cho tam giác ABC, O là giao điểm của các đường trung trực trong tam giác, H là trực tâm của tam giác. Gọi P, Q, R theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH
chứng minh AQ=OM
Cho tam giác ABC nhọn có H là trực tâm, O là giao điểm 3 đường trung trực. Gọi M là
trung điểm BC. Chứng minh AH = 2OM.
ho tam giác nhọn ABC có trực tâm H, O là giao điểm các trung trực của tam giác ABC. D là điểm sao cho O là trung điểm AD.
a) Chứng minh rằng tứ giác BHCD là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh rằng AH=2OM.
c) Gọi G là trọng tâm của tam giác ABC. CMR: H,G,O thẳng hàng và OG=1/3OH
Cho tam giác ABC có trực tâm H. Gọi M va N là trung điểm BC; AC. O là giao điểm các đường trung trực.
a) Chứng minh: tam giác OMN đồng dạng với tam giác HAB
b) So sánh AH và OM.
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh tam giác HAG đồng dạng với tam giác OMG